You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 5 Next »

This page evaluates the RRTMGP gas optics scheme, designed for weather and climate applications. The comparisons below use the 50 profiles of the "Evaluation-1" CKDMIP dataset. The reference calculations were performed using LBLRTM to generate the high resolution absorption spectra and the CKDMIP software to perform the radiative transfer. See also the results for the earlier RRTMG gas optics scheme, and also those from a Neural Network approximation to RRTMGP.

Longwave

The longwave gas optics scheme uses a total of 256 g-points (k terms) in 16 bands. The evaluation has been performed using radiative transfer with four zenith angles in each hemisphere (8-stream).  The following plots evaluate fluxes and heating rates for the four CKDMIP greenhouse-gas scenarios "Present", "Preindustrial", "Glacial Maximum" and "Future". The comparison shares some of the features of the ecRad-RRTMG results, but are generally improved with less wiggles in the heating rate errors.

To examine the performance in more detail, the following plot evaluates fluxes and heating rates in each of the 13 CKDMIP longwave bands. The performance is noticeably better than in the equivalent plot for the ecRad-RRTMG simulations.


The following plot compares the instantaneous radiative forcing (change to net flux) at top-of-atmosphere and the surface, from perturbing the concentrations of individual well-mixed greenhouse gases from their present-day values, found by averaging over the 50 profiles of the Evaluation-1 dataset.  For the minimum and maximum concentrations, the change to mean atmospheric heating rate is also evaluated. In this case we see that RRTMGP represents the radiative forcing of all gases well, and is much better than RRTMG at representing low concentrations of methane.

The following plot evaluates the representation of the overlap of the longwave absorption by carbon dioxide, methane and nitrous oxide. In each case, the x-axis shows the top-of-atmosphere radiative forcing from perturbing a gas to either its climatic minimum or maximum value, using the ranges stated by Hogan and Matricardi (2020). These radiative forcings are computed keeping the concentrations of all other well-mixed gases at their present-day values, except for the gas on the y-axis which is perturbed to its own climatic minimum or maximum values. The performance is improved somewhat from RRTMG.

Shortwave

Coming soon!


  • No labels