This page provides an overview of regional forecast skill for the SON 2025 period. A detailed description of outputs automatically updated on this page can be found on the following section's overview.
All regional RPSSs are available to download via the following link:
SON 2025 Regional RPSSs (Excel format)
|
| Teamname | Team_rank | Modelname | Model_rank | Global | Tropics | NHem. ExTro. | SHem. ExTro. | NHem. Polar | SHem. Polar | Europe | N. Amer. | S. Amer. | Africa | Asia | Oceania |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CMAandFDU | 1 | FengshunAdjust | 1 | 0.061 | 0.117 | 0.029 | 0.002 | 0.033 | -0.014 | 0.003 | 0.058 | 0.133 | 0.11 | 0.072 | 0.129 |
| CMAandFDU | 1 | FengshunHybrid | 2 | 0.053 | 0.08 | 0.032 | 0.028 | 0.025 | 0.02 | 0.01 | 0.027 | 0.06 | 0.065 | 0.077 | 0.047 |
| CMAandFDU | 1 | Fengshun | 14 | -0.002 | 0.001 | 0.006 | 0.029 | 0.053 | -0.08 | 0.006 | -0.024 | 0.007 | -0.077 | 0.042 | 0.078 |
| MicroEnsemble | 2 | StillLearning | 3 | 0.051 | 0.099 | 0.006 | 0.039 | 0.045 | -0.022 | -0.019 | 0.019 | 0.095 | 0.083 | 0.055 | 0.094 |
| MicroEnsemble | 2 | MicroDuet | 4 | 0.045 | 0.087 | 0.0 | 0.047 | 0.042 | -0.013 | -0.026 | 0.046 | 0.114 | 0.017 | 0.044 | 0.103 |
| MicroEnsemble | 2 | Huracan | 8 | 0.009 | 0.021 | -0.017 | 0.053 | 0.032 | -0.044 | -0.047 | 0.032 | 0.048 | -0.06 | 0.001 | 0.059 |
| LP | 3 | LPM | 5 | 0.036 | 0.056 | 0.026 | 0.044 | 0.022 | -0.059 | -0.002 | 0.036 | 0.077 | 0.024 | 0.066 | 0.006 |
| AIFS | 4 | AIFSgaia | 6 | 0.024 | 0.04 | -0.013 | 0.032 | 0.029 | 0.029 | -0.017 | -0.051 | 0.118 | 0.009 | 0.033 | 0.009 |
| AIFS | 4 | AIFShera | 7 | 0.009 | 0.014 | -0.02 | 0.005 | 0.045 | -0.015 | 0.009 | -0.083 | 0.078 | 0.007 | 0.019 | 0.061 |
| AIFS | 4 | AIFSthalassa | 15 | -0.005 | -0.028 | 0.0 | -0.007 | 0.021 | 0.026 | 0.013 | -0.046 | 0.04 | -0.08 | 0.03 | -0.117 |
| KITKangu | 5 | KanguPlusPlus | 9 | 0.0 | -0.0 | -0.0 | -0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.0 | -0.0 | 0.0 | -0.0 |
| KITKangu | 5 | KanguParametricPrediction | 9 | 0.0 | -0.0 | -0.0 | -0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.0 | -0.0 | 0.0 | -0.0 |
| scienceAI | 5 | findforecast | 9 | 0.0 | -0.0 | -0.0 | -0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.0 | -0.0 | 0.0 | -0.0 |
| scienceAI | 5 | zephyr | 9 | 0.0 | -0.0 | -0.0 | -0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.0 | -0.0 | 0.0 | -0.0 |
| scienceAI | 5 | ngcm | 9 | 0.0 | -0.0 | -0.0 | -0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -0.0 | -0.0 | 0.0 | -0.0 |
| KITKangu | 5 | KanguS2SEasyUQ | 39 | -1.39 | -1.441 | -1.309 | -0.861 | -1.343 | -1.442 | -1.219 | -1.261 | -1.532 | -1.509 | -1.364 | -1.174 |
| CliMA | 7 | CliMAWeather | 16 | -0.1 | -0.138 | -0.114 | -0.127 | -0.031 | 0.024 | -0.122 | -0.12 | -0.117 | -0.269 | -0.103 | 0.089 |
| CliMA | 7 | CliMAWeather2 | 17 | -0.106 | -0.142 | -0.123 | -0.138 | -0.037 | 0.02 | -0.134 | -0.133 | -0.13 | -0.278 | -0.102 | 0.09 |
| FengWuW2S | 8 | FengWu2 | 18 | -0.264 | -0.203 | -0.457 | 0.008 | -0.308 | -0.054 | -0.301 | -0.058 | -0.098 | -0.276 | -0.616 | -0.282 |
| FengWuW2S | 8 | FengWu | 20 | -0.35 | -0.476 | -0.363 | -0.106 | -0.205 | 0.007 | -0.271 | -0.139 | -0.587 | -0.678 | -0.472 | -0.333 |
| NordicS2S | 9 | NordicS2S1 | 19 | -0.315 | -0.342 | -0.24 | -0.25 | -0.161 | -0.439 | -0.153 | -0.165 | -0.283 | -0.584 | -0.259 | -0.272 |
| NordicS2S | 9 | NordicS2S3 | 27 | -0.527 | -0.778 | -0.28 | -0.111 | -0.328 | -0.427 | -0.321 | -0.477 | -0.704 | -0.923 | -0.413 | -0.589 |
| NordicS2S | 9 | NordicS2S2 | 29 | -0.606 | -0.731 | -0.654 | -0.764 | -0.222 | -0.092 | -0.37 | -0.669 | -0.78 | -0.854 | -0.503 | -0.553 |
| Sibyl | 10 | ClimSDE | 21 | -0.386 | -0.392 | -0.319 | -0.779 | -0.261 | -0.506 | -0.276 | -0.345 | -0.634 | -0.409 | -0.22 | -0.299 |