This page provides an overview of regional forecast skill for the SON 2025 period. Forecast scores are updated automatically every week throughout the competitive period. The current data includes forecasts initialized between Thursday 14th August 2025 and Thursday 18th September 2025 (inclusive). For a detailed description of the outputs, please refer to the section's overview.

Regional skill score files

All regional RPSSs are available to download via the following link:

SON 2025 Regional RPSSs (Excel format)

Regional scores for the top 10 teams of global, period-aggregated, variable-averaged RPSSs

Team nameTeam rankModel nameModel rankGlobalTropicsNHem. ExTro.SHem. ExTro.NHem. PolarSHem. PolarEuropeN. Amer.S. Amer.AfricaAsiaOceania
MicroEnsemble1MicroDuet10.0730.1160.0320.0530.0240.0210.0180.0440.0820.0720.0690.117
MicroEnsemble1StillLearning30.0670.1080.0290.0480.0180.0170.0190.0390.0710.0970.0590.125
MicroEnsemble1Huracan90.0270.0320.0190.0350.0140.0080.0140.0380.006-0.0360.0390.043
CMAandFDU2FengshunAdjust20.070.140.0170.016-0.016-0.020.0130.0380.1380.1050.0460.087
CMAandFDU2FengshunHybrid40.0650.1190.0190.020.0080.002-0.0020.060.0960.1010.0450.044
CMAandFDU2Fengshun100.0120.0310.006-0.0080.006-0.0530.0230.0230.024-0.010.031-0.05
LP3LPM50.0490.0740.0260.0420.019-0.0-0.0120.0450.0580.0350.0540.052
AIFS4AIFShera60.040.050.0310.0180.0240.0130.0190.0290.0710.0270.0480.019
AIFS4AIFSgaia70.0370.0650.0170.0080.006-0.0140.0070.0250.0520.0410.036-0.012
AIFS4AIFSthalassa80.0360.0580.0180.0040.0220.002-0.00.0220.0490.020.040.012
scienceAI5findforecast110.001-0.001-0.0030.019-0.0090.007-0.0150.028-0.006-0.014-0.0140.031
scienceAI5zephyr120.0-0.0-0.0-0.00.00.00.00.0-0.0-0.00.0-0.0
scienceAI5ngcm120.0-0.0-0.0-0.00.00.00.00.0-0.0-0.00.0-0.0
KITKangu6KanguPlusPlus120.0-0.0-0.0-0.00.00.00.00.0-0.0-0.00.0-0.0
KITKangu6KanguParametricPrediction120.0-0.0-0.0-0.00.00.00.00.0-0.0-0.00.0-0.0
KITKangu6KanguS2SEasyUQ35-1.063-1.154-0.984-1.074-0.847-1.001-0.952-1.0-1.177-1.145-0.957-1.321
CliMA7CliMAWeather216-0.13-0.143-0.178-0.114-0.084-0.003-0.112-0.133-0.147-0.203-0.156-0.104
CliMA7CliMAWeather22-0.259-0.303-0.256-0.327-0.232-0.119-0.224-0.166-0.287-0.34-0.332-0.37
WindBorne8WeatherMesh17-0.166-0.125-0.163-0.296-0.14-0.424-0.2-0.208-0.151-0.163-0.123-0.226
FengWuW2S9FengWu218-0.191-0.198-0.289-0.043-0.158-0.026-0.219-0.117-0.083-0.315-0.358-0.224
FengWuW2S9FengWu19-0.236-0.332-0.194-0.111-0.074-0.172-0.146-0.139-0.339-0.427-0.276-0.278
HAPPY10AZN20-0.244-0.259-0.255-0.538-0.2990.069-0.072-0.299-0.303-0.219-0.316-0.443
Team nameTeam rankModel nameModel rankGlobalTropicsNHem. ExTro.SHem. ExTro.NHem. PolarSHem. PolarEuropeN. Amer.S. Amer.AfricaAsiaOceania
MicroEnsemble1MicroDuet10.0460.081-0.0010.0630.0090.034-0.0310.0520.0770.060.0220.086
MicroEnsemble1StillLearning20.0430.078-0.0020.0520.0050.033-0.0310.0440.0660.0750.0190.089
MicroEnsemble1Huracan70.0090.016-0.0190.0540.0030.018-0.0430.0510.024-0.034-0.0160.031
CMAandFDU2FengshunAdjust30.0330.0710.0040.01-0.0090.004-0.0030.0360.060.0840.0110.038
CMAandFDU2FengshunHybrid40.0290.0590.0020.024-0.0160.018-0.010.0480.0450.058-0.0010.023
CMAandFDU2Fengshun13-0.0060.0020.0030.0-0.005-0.0470.0090.0240.001-0.015-0.002-0.046
LP3LPM50.0220.037-0.0040.0260.0120.023-0.040.0560.0390.0210.0080.013
AIFS4AIFSgaia60.0130.032-0.003-0.012-0.0050.008-0.0180.0510.0540.001-0.015-0.008
AIFS4AIFShera80.0040.013-0.009-0.015-0.0060.01-0.0160.0240.054-0.011-0.0230.007
AIFS4AIFSthalassa15-0.016-0.035-0.008-0.010.0020.023-0.0210.0370.006-0.113-0.023-0.013
KITKangu5KanguPlusPlus90.0-0.0-0.0-0.00.00.00.00.0-0.0-0.00.0-0.0
KITKangu5KanguParametricPrediction90.0-0.0-0.0-0.00.00.00.00.0-0.0-0.00.0-0.0
scienceAI5zephyr90.0-0.0-0.0-0.00.00.00.00.0-0.0-0.00.0-0.0
scienceAI5ngcm90.0-0.0-0.0-0.00.00.00.00.0-0.0-0.00.0-0.0
scienceAI5findforecast14-0.01-0.018-0.0090.0280.0040.0-0.010.027-0.024-0.015-0.0250.019
KITKangu5KanguS2SEasyUQ34-1.086-1.202-1.004-1.025-0.84-1.003-1.014-1.106-1.168-1.326-0.955-1.132
CliMA7CliMAWeather216-0.186-0.227-0.245-0.145-0.086-0.013-0.206-0.152-0.22-0.304-0.226-0.187
CliMA7CliMAWeather21-0.33-0.389-0.333-0.368-0.286-0.2-0.318-0.109-0.355-0.49-0.435-0.416
FengWuW2S8FengWu217-0.199-0.261-0.2650.029-0.1050.09-0.108-0.226-0.117-0.33-0.331-0.178
FengWuW2S8FengWu18-0.255-0.38-0.205-0.065-0.064-0.136-0.109-0.203-0.37-0.491-0.252-0.269
HAPPY9AZN19-0.291-0.328-0.268-0.688-0.3380.021-0.214-0.396-0.468-0.227-0.254-0.569
NordicS2S10NordicS2S120-0.305-0.248-0.334-0.343-0.387-0.335-0.48-0.24-0.289-0.28-0.333-0.306
NordicS2S10NordicS2S325-0.492-0.577-0.385-0.298-0.451-0.59-0.534-0.267-0.522-0.694-0.483-0.559
NordicS2S10NordicS2S227-0.591-0.615-0.609-0.591-0.513-0.603-0.727-0.465-0.717-0.631-0.573-0.545

Figures showing aggregated RPSSs for best-performing model from top 10 teams

Figures showing percentage of grid points with positive period-aggregated RPSSs