This page provides an overview of regional forecast skill for the SON 2025 period. Forecast scores are updated automatically every week throughout the competitive period. The current data includes 1 forecasts initialized between Thursday 14th August 2025 and Thursday 14th August 2025 (inclusive). For a detailed description of the outputs, please refer to the section's overview.

Regional skill score files

All regional RPSSs are available to download via the following link:

SON 2025 Regional RPSSs (Excel format)

Regional scores for the top 10 teams of global, period-aggregated, variable-averaged RPSSs

Team nameTeam rankModel nameModel rankGlobalTropicsNHem. ExTro.SHem. ExTro.NHem. PolarSHem. PolarEuropeN. Amer.S. Amer.AfricaAsiaOceania
AIFS1AIFShera10.0870.1080.083-0.0590.0440.0240.092-0.0280.0550.0570.1470.061
AIFS1AIFSgaia30.0810.1330.05-0.080.034-0.0240.091-0.074-0.030.1390.1560.035
AIFS1AIFSthalassa60.0750.1290.037-0.1270.029-0.050.039-0.046-0.1130.1280.1290.061
CMAandFDU2FengshunAdjust20.0850.1710.015-0.0730.005-0.0220.063-0.0240.0950.0540.1130.053
CMAandFDU2FengshunHybrid70.0640.1250.002-0.0470.046-0.0210.037-0.026-0.0640.1070.122-0.023
CMAandFDU2Fengshun100.0350.086-0.006-0.0820.048-0.0410.066-0.041-0.0080.030.0830.104
MicroEnsemble3MicroDuet40.0770.1080.049-0.0220.0320.0650.105-0.002-0.0190.0630.1090.092
MicroEnsemble3StillLearning50.0770.1020.058-0.0090.040.0640.119-0.004-0.0020.0560.1130.082
MicroEnsemble3Huracan90.0470.0440.06-0.0450.020.0690.104-0.005-0.09-0.0150.0990.04
LP4LPM80.0620.0830.061-0.0140.0240.0170.0870.0190.0320.0210.092-0.021
KITKangu5KanguPlusPlus11-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
KITKangu5KanguParametricPrediction11-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
scienceAI5findforecast11-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
scienceAI5zephyr11-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
scienceAI5ngcm11-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
KITKangu5KanguS2SEasyUQ39-1.235-1.34-1.045-1.357-1.094-1.265-1.194-0.876-1.493-1.446-1.178-1.673
CliMA7CliMAWeather16-0.04-0.039-0.052-0.24-0.0370.0630.011-0.087-0.151-0.024-0.019-0.137
CliMA7CliMAWeather217-0.04-0.041-0.049-0.238-0.0390.0680.008-0.086-0.159-0.025-0.017-0.129
WindBorne8WeatherMesh18-0.125-0.082-0.206-0.259-0.153-0.132-0.202-0.187-0.14-0.184-0.141-0.358
FengWuW2S9FengWu219-0.26-0.135-0.434-0.255-0.471-0.25-0.732-0.042-0.124-0.452-0.491-0.126
FengWuW2S9FengWu22-0.33-0.385-0.331-0.388-0.27-0.177-0.462-0.162-0.524-0.629-0.393-0.269
Sibyl10ClimSDE20-0.298-0.344-0.306-0.515-0.19-0.364-0.277-0.186-0.28-0.519-0.315-0.572
Team nameTeam rankModel nameModel rankGlobalTropicsNHem. ExTro.SHem. ExTro.NHem. PolarSHem. PolarEuropeN. Amer.S. Amer.AfricaAsiaOceania
CMAandFDU1FengshunAdjust10.0610.1170.0290.0020.033-0.0140.0030.0580.1330.110.0720.129
CMAandFDU1FengshunHybrid20.0530.080.0320.0280.0250.020.010.0270.060.0650.0770.047
CMAandFDU1Fengshun14-0.0020.0010.0060.0290.053-0.080.006-0.0240.007-0.0770.0420.078
MicroEnsemble2StillLearning30.0510.0990.0060.0390.045-0.022-0.0190.0190.0950.0830.0550.094
MicroEnsemble2MicroDuet40.0450.0870.00.0470.042-0.013-0.0260.0460.1140.0170.0440.103
MicroEnsemble2Huracan80.0090.021-0.0170.0530.032-0.044-0.0470.0320.048-0.060.0010.059
LP3LPM50.0360.0560.0260.0440.022-0.059-0.0020.0360.0770.0240.0660.006
AIFS4AIFSgaia60.0240.04-0.0130.0320.0290.029-0.017-0.0510.1180.0090.0330.009
AIFS4AIFShera70.0090.014-0.020.0050.045-0.0150.009-0.0830.0780.0070.0190.061
AIFS4AIFSthalassa15-0.005-0.0280.0-0.0070.0210.0260.013-0.0460.04-0.080.03-0.117
KITKangu5KanguPlusPlus9-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
KITKangu5KanguParametricPrediction9-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
scienceAI5findforecast9-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
scienceAI5zephyr9-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
scienceAI5ngcm9-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
KITKangu5KanguS2SEasyUQ39-1.39-1.441-1.309-0.861-1.343-1.442-1.219-1.261-1.532-1.509-1.364-1.174
CliMA7CliMAWeather16-0.1-0.138-0.114-0.127-0.0310.024-0.122-0.12-0.117-0.269-0.1030.089
CliMA7CliMAWeather217-0.106-0.142-0.123-0.138-0.0370.02-0.134-0.133-0.13-0.278-0.1020.09
FengWuW2S8FengWu218-0.264-0.203-0.4570.008-0.308-0.054-0.301-0.058-0.098-0.276-0.616-0.282
FengWuW2S8FengWu20-0.35-0.476-0.363-0.106-0.2050.007-0.271-0.139-0.587-0.678-0.472-0.333
NordicS2S9NordicS2S119-0.315-0.342-0.24-0.25-0.161-0.439-0.153-0.165-0.283-0.584-0.259-0.272
NordicS2S9NordicS2S327-0.527-0.778-0.28-0.111-0.328-0.427-0.321-0.477-0.704-0.923-0.413-0.589
NordicS2S9NordicS2S229-0.606-0.731-0.654-0.764-0.222-0.092-0.37-0.669-0.78-0.854-0.503-0.553
Sibyl10ClimSDE21-0.386-0.392-0.319-0.779-0.261-0.506-0.276-0.345-0.634-0.409-0.22-0.299

Figures showing aggregated RPSSs for best-performing model from top 10 teams

Figures showing percentage of grid points with positive period-aggregated RPSSs

Figures showing observed conditions with respect to defined ERA5 climatology