This page provides an overview of regional forecast skill for the SON 2025 period. Forecast scores are updated automatically every week throughout the competitive period. The current data includes forecasts initialized between Thursday 14th August 2025 and Thursday 11th September 2025 (inclusive). For a detailed description of the outputs, please refer to the section's overview.

Regional skill score files

All regional RPSSs are available to download via the following link:

SON 2025 Regional RPSSs (Excel format)

Regional scores for the top 10 teams of global, period-aggregated, variable-averaged RPSSs

Team nameTeam rankModel nameModel rankGlobalTropicsNHem. ExTro.SHem. ExTro.NHem. PolarSHem. PolarEuropeN. Amer.S. Amer.AfricaAsiaOceania
CMAandFDU1FengshunAdjust10.0720.1420.0210.005-0.016-0.0260.0080.0340.1460.1070.0570.088
CMAandFDU1FengshunHybrid30.070.1260.0260.010.009-0.005-0.0050.050.0970.1060.0660.061
CMAandFDU1Fengshun100.0170.0410.006-0.0230.003-0.0490.010.0130.016-0.0060.048-0.016
MicroEnsemble2MicroDuet20.0720.1160.0330.0470.0190.0120.0220.0320.0870.0750.070.113
MicroEnsemble2StillLearning40.0670.1090.0290.0430.0120.0060.0250.0240.0780.1010.0590.116
MicroEnsemble2Huracan90.0270.0320.0210.0280.004-0.0010.0150.0240.012-0.0250.0380.03
AIFS3AIFSgaia50.0510.0840.0310.0010.015-0.020.0130.010.0710.0630.067-0.012
AIFS3AIFShera60.050.0680.040.0120.0210.0070.0140.0130.0890.0390.0750.021
AIFS3AIFSthalassa80.040.0610.026-0.010.021-0.0060.0050.0060.0510.0370.062-0.013
LP4LPM70.050.0730.0310.0460.014-0.009-0.0040.0380.0620.0350.0570.051
scienceAI5findforecast110.0030.0020.0030.014-0.0120.014-0.020.0180.006-0.003-0.0050.012
scienceAI5zephyr120.0-0.0-0.0-0.00.00.00.00.0-0.0-0.00.0-0.0
scienceAI5ngcm120.0-0.0-0.0-0.00.00.00.00.0-0.0-0.00.0-0.0
KITKangu6KanguPlusPlus120.0-0.0-0.0-0.00.00.00.00.0-0.0-0.00.0-0.0
KITKangu6KanguParametricPrediction120.0-0.0-0.0-0.00.00.00.00.0-0.0-0.00.0-0.0
KITKangu6KanguS2SEasyUQ35-1.041-1.12-0.975-1.076-0.862-0.956-0.919-0.976-1.141-1.066-0.97-1.369
CliMA7CliMAWeather216-0.15-0.156-0.212-0.15-0.112-0.007-0.123-0.182-0.149-0.214-0.181-0.136
CliMA7CliMAWeather19-0.215-0.258-0.205-0.324-0.201-0.082-0.192-0.188-0.243-0.287-0.246-0.324
WindBorne8WeatherMesh17-0.174-0.129-0.187-0.315-0.174-0.396-0.192-0.208-0.124-0.169-0.166-0.229
FengWuW2S9FengWu218-0.21-0.189-0.337-0.076-0.208-0.053-0.252-0.108-0.083-0.305-0.426-0.245
FengWuW2S9FengWu21-0.246-0.328-0.228-0.134-0.107-0.163-0.165-0.161-0.324-0.424-0.32-0.274
NordicS2S10NordicS2S120-0.237-0.155-0.255-0.314-0.274-0.449-0.279-0.173-0.214-0.21-0.183-0.249
NordicS2S10NordicS2S323-0.364-0.376-0.359-0.335-0.329-0.519-0.292-0.316-0.433-0.454-0.291-0.414
NordicS2S10NordicS2S226-0.517-0.547-0.494-0.448-0.46-0.555-0.411-0.535-0.645-0.491-0.436-0.618
Team nameTeam rankModel nameModel rankGlobalTropicsNHem. ExTro.SHem. ExTro.NHem. PolarSHem. PolarEuropeN. Amer.S. Amer.AfricaAsiaOceania
CMAandFDU1FengshunAdjust10.0540.1020.0150.02-0.0120.0150.0020.0540.0850.0870.0180.06
CMAandFDU1FengshunHybrid40.0370.0690.0110.027-0.0220.028-0.0040.0520.0530.0550.0040.001
CMAandFDU1Fengshun90.0010.0070.0130.019-0.004-0.0320.0130.0240.012-0.0260.007-0.06
MicroEnsemble2MicroDuet20.0520.0910.0020.0540.0080.032-0.0160.0450.0840.0620.0270.076
MicroEnsemble2StillLearning30.0490.089-0.0010.0430.0030.024-0.0190.0350.070.0820.0230.097
MicroEnsemble2Huracan70.010.019-0.0160.0480.00.004-0.0220.0390.028-0.031-0.0110.002
LP3LPM50.0250.043-0.0040.020.0110.017-0.040.0520.0380.0240.012-0.014
AIFS4AIFSgaia60.0170.0310.014-0.008-0.0080.005-0.0080.0560.057-0.002-0.006-0.048
AIFS4AIFShera80.0030.006-0.001-0.007-0.0140.007-0.0170.0210.055-0.017-0.017-0.018
AIFS4AIFSthalassa15-0.011-0.0370.003-0.0140.0020.036-0.010.0380.011-0.123-0.017-0.046
scienceAI5findforecast100.001-0.0-0.0030.022-0.0070.012-0.0040.024-0.005-0.008-0.0130.028
scienceAI5zephyr110.0-0.0-0.0-0.00.00.00.00.0-0.0-0.00.0-0.0
scienceAI5ngcm110.0-0.0-0.0-0.00.00.00.00.0-0.0-0.00.0-0.0
KITKangu6KanguPlusPlus110.0-0.0-0.0-0.00.00.00.00.0-0.0-0.00.0-0.0
KITKangu6KanguParametricPrediction110.0-0.0-0.0-0.00.00.00.00.0-0.0-0.00.0-0.0
KITKangu6KanguS2SEasyUQ34-1.076-1.179-0.995-0.993-0.792-1.065-0.952-1.141-1.144-1.266-0.9-1.119
CliMA7CliMAWeather216-0.213-0.245-0.296-0.159-0.114-0.016-0.228-0.197-0.235-0.334-0.267-0.22
CliMA7CliMAWeather18-0.277-0.324-0.271-0.267-0.281-0.164-0.232-0.117-0.3-0.431-0.371-0.326
FengWuW2S8FengWu217-0.23-0.288-0.3060.012-0.1110.055-0.111-0.223-0.127-0.334-0.389-0.302
FengWuW2S8FengWu19-0.281-0.41-0.227-0.07-0.076-0.155-0.1-0.211-0.395-0.503-0.3-0.346
NordicS2S9NordicS2S120-0.288-0.248-0.288-0.304-0.387-0.326-0.392-0.193-0.25-0.319-0.326-0.322
NordicS2S9NordicS2S325-0.525-0.659-0.347-0.276-0.464-0.554-0.475-0.293-0.575-0.715-0.471-0.679
NordicS2S9NordicS2S227-0.589-0.608-0.615-0.63-0.553-0.575-0.702-0.501-0.732-0.66-0.568-0.534
HAPPY10AZN21-0.299-0.353-0.252-0.678-0.335-0.0-0.21-0.311-0.489-0.256-0.28-0.609

Figures showing aggregated RPSSs for best-performing model from top 10 teams

Figures showing percentage of grid points with positive period-aggregated RPSSs