This page provides an overview of regional forecast skill for the SON 2025 period. Forecast scores are updated automatically every week throughout the competitive period. The current data includes 3 forecasts initialized between Thursday 14th August 2025 and Thursday 28th August 2025 (inclusive). For a detailed description of the outputs, please refer to the section's overview.

Regional skill score files

All regional RPSSs are available to download via the following link:

SON 2025 Regional RPSSs (Excel format)

Regional scores for the top 10 teams of global, period-aggregated, variable-averaged RPSSs

Team nameTeam rankModel nameModel rankGlobalTropicsNHem. ExTro.SHem. ExTro.NHem. PolarSHem. PolarEuropeN. Amer.S. Amer.AfricaAsiaOceania
MicroEnsemble1MicroDuet10.0710.1060.050.0390.0290.020.0720.0190.0570.0650.0940.105
MicroEnsemble1StillLearning20.0690.1030.0540.0340.030.010.0780.0120.0550.0870.0920.102
MicroEnsemble1Huracan90.0320.0310.0410.0290.0150.0140.0650.015-0.018-0.0390.0630.057
CMAandFDU2FengshunAdjust30.0660.1290.0330.0120.001-0.0490.0460.0220.1180.0750.0820.117
CMAandFDU2FengshunHybrid40.0650.1170.0370.0070.016-0.0210.0520.0310.0440.0950.0910.092
CMAandFDU2Fengshun100.0150.049-0.001-0.0430.008-0.0480.032-0.0350.009-0.010.0650.067
LP3LPM50.0530.0760.0490.0510.018-0.0270.0480.0210.0350.0360.0870.062
AIFS4AIFSgaia60.0470.0730.040.0040.021-0.0230.078-0.0320.0320.0650.0820.008
AIFS4AIFShera70.0440.0590.038-0.0020.02-0.0050.049-0.0340.0580.0310.0820.061
AIFS4AIFSthalassa80.0350.0640.015-0.0130.018-0.040.019-0.0380.0120.0380.0680.02
KITKangu5KanguPlusPlus11-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
KITKangu5KanguParametricPrediction11-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
scienceAI5findforecast11-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
scienceAI5zephyr11-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
scienceAI5ngcm11-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
KITKangu5KanguS2SEasyUQ38-1.324-1.43-1.221-1.327-1.157-1.195-1.167-1.133-1.423-1.436-1.263-1.814
CliMA7CliMAWeather16-0.094-0.118-0.107-0.146-0.0770.031-0.039-0.114-0.123-0.153-0.121-0.088
CliMA7CliMAWeather217-0.095-0.109-0.109-0.118-0.0950.028-0.07-0.136-0.102-0.161-0.095-0.039
WindBorne8WeatherMesh18-0.203-0.181-0.21-0.26-0.21-0.301-0.213-0.229-0.204-0.24-0.197-0.228
FengWuW2S9FengWu219-0.247-0.163-0.434-0.085-0.346-0.123-0.435-0.145-0.073-0.294-0.506-0.175
FengWuW2S9FengWu21-0.287-0.36-0.289-0.149-0.154-0.176-0.245-0.195-0.381-0.463-0.378-0.273
NordicS2S10NordicS2S120-0.249-0.173-0.285-0.324-0.164-0.409-0.193-0.227-0.197-0.228-0.153-0.279
NordicS2S10NordicS2S323-0.39-0.402-0.376-0.402-0.313-0.495-0.29-0.359-0.5-0.456-0.296-0.461
NordicS2S10NordicS2S228-0.556-0.625-0.547-0.441-0.393-0.457-0.269-0.678-0.725-0.601-0.451-0.636
Team nameTeam rankModel nameModel rankGlobalTropicsNHem. ExTro.SHem. ExTro.NHem. PolarSHem. PolarEuropeN. Amer.S. Amer.AfricaAsiaOceania
CMAandFDU1FengshunAdjust10.0570.1070.0250.008-0.0020.0160.0080.0480.0830.0830.0490.104
CMAandFDU1FengshunHybrid40.0460.0770.0340.013-0.0150.0280.0180.0370.0460.0450.0460.061
CMAandFDU1Fengshun90.0030.010.0170.0150.005-0.0290.0010.007-0.012-0.0250.0340.003
MicroEnsemble2MicroDuet20.0540.0920.0180.0350.0150.0160.0290.0290.0930.0540.0390.101
MicroEnsemble2StillLearning30.0530.0940.0220.020.0130.0020.0380.0130.0840.0790.0410.112
MicroEnsemble2Huracan70.0110.021-0.0010.0260.005-0.0190.0120.020.031-0.0370.0010.026
LP3LPM50.0330.0540.020.0030.015-0.0080.0130.0460.0530.0140.0390.017
AIFS4AIFSgaia60.0240.040.025-0.013-0.0030.0040.0040.0330.078-0.0070.023-0.02
AIFS4AIFShera80.0090.0140.005-0.008-0.0020.013-0.007-0.0060.072-0.0230.0050.001
AIFS4AIFSthalassa15-0.007-0.0280.013-0.034-0.0020.024-0.0080.0180.017-0.1260.011-0.048
KITKangu5KanguPlusPlus10-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
KITKangu5KanguParametricPrediction10-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
scienceAI5findforecast10-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
scienceAI5zephyr10-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
scienceAI5ngcm10-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
KITKangu5KanguS2SEasyUQ38-1.38-1.494-1.32-1.22-1.016-1.336-1.229-1.431-1.496-1.559-1.197-1.388
CliMA7CliMAWeather16-0.179-0.226-0.173-0.232-0.132-0.072-0.144-0.11-0.237-0.352-0.228-0.111
CliMA7CliMAWeather217-0.201-0.23-0.255-0.232-0.114-0.064-0.131-0.153-0.224-0.352-0.267-0.195
NordicS2S8NordicS2S118-0.26-0.27-0.225-0.31-0.172-0.285-0.312-0.158-0.325-0.406-0.204-0.272
NordicS2S8NordicS2S325-0.507-0.69-0.283-0.378-0.256-0.524-0.329-0.348-0.696-0.8-0.346-0.718
NordicS2S8NordicS2S228-0.574-0.648-0.56-0.643-0.339-0.498-0.521-0.531-0.738-0.69-0.499-0.597
FengWuW2S9FengWu219-0.266-0.266-0.4250.003-0.2250.042-0.212-0.257-0.127-0.33-0.493-0.304
FengWuW2S9FengWu20-0.312-0.419-0.313-0.08-0.138-0.123-0.127-0.271-0.429-0.558-0.374-0.294
HAPPY10AZN21-0.39-0.46-0.384-0.854-0.313-0.028-0.409-0.354-0.653-0.358-0.352-0.728

Figures showing aggregated RPSSs for best-performing model from top 10 teams

Figures showing percentage of grid points with positive period-aggregated RPSSs

Figures showing observed conditions with respect to defined ERA5 climatology