This page provides an overview of regional forecast skill for the SON 2025 period. Forecast scores are updated automatically every week throughout the competitive period. The current data includes 5 forecasts initialized between Thursday 14th August 2025 and Thursday 11th September 2025 (inclusive). For a detailed description of the outputs, please refer to the section's overview.

Regional skill score files

All regional RPSSs are available to download via the following link:

SON 2025 Regional RPSSs (Excel format)

Regional scores for the top 10 teams of global, period-aggregated, variable-averaged RPSSs

Team nameTeam rankModel nameModel rankGlobalTropicsNHem. ExTro.SHem. ExTro.NHem. PolarSHem. PolarEuropeN. Amer.S. Amer.AfricaAsiaOceania
CMAandFDU1FengshunAdjust10.0720.1420.0210.005-0.016-0.0260.0080.0340.1460.1070.0570.088
CMAandFDU1FengshunHybrid30.070.1260.0260.010.009-0.005-0.0050.050.0970.1060.0660.061
CMAandFDU1Fengshun100.0170.0410.006-0.0230.003-0.0490.010.0130.016-0.0060.048-0.016
MicroEnsemble2MicroDuet20.0720.1160.0330.0470.0190.0120.0220.0320.0870.0750.070.113
MicroEnsemble2StillLearning40.0670.1090.0290.0430.0120.0060.0250.0240.0780.1010.0590.116
MicroEnsemble2Huracan90.0270.0320.0210.0280.004-0.0010.0150.0240.012-0.0250.0380.03
AIFS3AIFSgaia50.0510.0840.0310.0010.015-0.020.0130.010.0710.0630.067-0.012
AIFS3AIFShera60.050.0680.040.0120.0210.0070.0140.0130.0890.0390.0750.021
AIFS3AIFSthalassa80.040.0610.026-0.010.021-0.0060.0050.0060.0510.0370.062-0.013
LP4LPM70.050.0730.0310.0460.014-0.009-0.0040.0380.0620.0350.0570.051
scienceAI5findforecast110.0030.0020.0030.014-0.0120.014-0.020.0180.006-0.003-0.0050.012
scienceAI5zephyr12-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
scienceAI5ngcm12-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
KITKangu6KanguPlusPlus12-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
KITKangu6KanguParametricPrediction12-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
KITKangu6KanguS2SEasyUQ35-1.041-1.12-0.975-1.076-0.862-0.956-0.919-0.976-1.141-1.066-0.97-1.369
CliMA7CliMAWeather216-0.15-0.156-0.212-0.15-0.112-0.007-0.123-0.182-0.149-0.214-0.181-0.136
CliMA7CliMAWeather19-0.215-0.258-0.205-0.324-0.201-0.082-0.192-0.188-0.243-0.287-0.246-0.324
WindBorne8WeatherMesh17-0.174-0.129-0.187-0.315-0.174-0.396-0.192-0.208-0.124-0.169-0.166-0.229
FengWuW2S9FengWu218-0.21-0.189-0.337-0.076-0.208-0.053-0.252-0.108-0.083-0.305-0.426-0.245
FengWuW2S9FengWu21-0.246-0.328-0.228-0.134-0.107-0.163-0.165-0.161-0.324-0.424-0.32-0.274
NordicS2S10NordicS2S120-0.237-0.155-0.255-0.314-0.274-0.449-0.279-0.173-0.214-0.21-0.183-0.249
NordicS2S10NordicS2S323-0.364-0.376-0.359-0.335-0.329-0.519-0.292-0.316-0.433-0.454-0.291-0.414
NordicS2S10NordicS2S226-0.517-0.547-0.494-0.448-0.46-0.555-0.411-0.535-0.645-0.491-0.436-0.618
Team nameTeam rankModel nameModel rankGlobalTropicsNHem. ExTro.SHem. ExTro.NHem. PolarSHem. PolarEuropeN. Amer.S. Amer.AfricaAsiaOceania
CMAandFDU1FengshunAdjust10.0540.1020.0150.02-0.0120.0150.0020.0540.0850.0870.0180.06
CMAandFDU1FengshunHybrid40.0370.0690.0110.027-0.0220.028-0.0040.0520.0530.0550.0040.001
CMAandFDU1Fengshun90.0010.0070.0130.019-0.004-0.0320.0130.0240.012-0.0260.007-0.06
MicroEnsemble2MicroDuet20.0520.0910.0020.0540.0080.032-0.0160.0450.0840.0620.0270.076
MicroEnsemble2StillLearning30.0490.089-0.0010.0430.0030.024-0.0190.0350.070.0820.0230.097
MicroEnsemble2Huracan70.010.019-0.0160.0480.00.004-0.0220.0390.028-0.031-0.0110.002
LP3LPM50.0250.043-0.0040.020.0110.017-0.040.0520.0380.0240.012-0.014
AIFS4AIFSgaia60.0170.0310.014-0.008-0.0080.005-0.0080.0560.057-0.002-0.006-0.048
AIFS4AIFShera80.0030.006-0.001-0.007-0.0140.007-0.0170.0210.055-0.017-0.017-0.018
AIFS4AIFSthalassa15-0.011-0.0370.003-0.0140.0020.036-0.010.0380.011-0.123-0.017-0.046
scienceAI5findforecast100.001-0.0-0.0030.022-0.0070.012-0.0040.024-0.005-0.008-0.0130.028
scienceAI5zephyr11-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
scienceAI5ngcm11-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
KITKangu6KanguPlusPlus11-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
KITKangu6KanguParametricPrediction11-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0-0.0
KITKangu6KanguS2SEasyUQ34-1.076-1.179-0.995-0.993-0.792-1.065-0.952-1.141-1.144-1.266-0.9-1.119
CliMA7CliMAWeather216-0.213-0.245-0.296-0.159-0.114-0.016-0.228-0.197-0.235-0.334-0.267-0.22
CliMA7CliMAWeather18-0.277-0.324-0.271-0.267-0.281-0.164-0.232-0.117-0.3-0.431-0.371-0.326
FengWuW2S8FengWu217-0.23-0.288-0.3060.012-0.1110.055-0.111-0.223-0.127-0.334-0.389-0.302
FengWuW2S8FengWu19-0.281-0.41-0.227-0.07-0.076-0.155-0.1-0.211-0.395-0.503-0.3-0.346
NordicS2S9NordicS2S120-0.288-0.248-0.288-0.304-0.387-0.326-0.392-0.193-0.25-0.319-0.326-0.322
NordicS2S9NordicS2S325-0.525-0.659-0.347-0.276-0.464-0.554-0.475-0.293-0.575-0.715-0.471-0.679
NordicS2S9NordicS2S227-0.589-0.608-0.615-0.63-0.553-0.575-0.702-0.501-0.732-0.66-0.568-0.534
HAPPY10AZN21-0.299-0.353-0.252-0.678-0.335-0.0-0.21-0.311-0.489-0.256-0.28-0.609

Figures showing aggregated RPSSs for best-performing model from top 10 teams

Figures showing percentage of grid points with positive period-aggregated RPSSs

Figures showing observed conditions with respect to defined ERA5 climatology