You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 7 Next »

1. Forecast system version

Identifier code: ACCESS-S2

First operational forecast run: 20 October 2021

2. Configuration of the forecast model

Is the model coupled to an ocean model?   Yes: Atmosphere, land, ocean and sea-ice.

Coupling frequency: Hourly

The coupled model is described in Hudson et al (2017) and Wedd et al (2022).

2.1 Atmosphere and land surface

Model

Global Atmosphere 6.0 (GA6): The Unified Model version 8.6 (UM; Williams et al. 2015; Walters et al. 2017). 

Global Land 6.0 (GL6): Joint UK Land Environment Simulator (JULES; Best et al. 2011; Walters et al. 2017)

Horizontal resolution and gridN216 (~60km in the mid-latitudes)
Atmosphere vertical resolution85 levels
Top of atmosphere85 km
Soil levelsFour soil levels
Time step

Detailed documentation:

2.2 Ocean and cryosphere

Ocean modelNEMO v3.4 (Madec et al. 2023; Megann et al. 2014)
Horizontal resolutionORCA 0.25
Vertical resolutionL75. Level thicknesses range from 1 m near the surface to ~200 m near the bottom (6000-m depth)
Time step
Sea ice modelCICE v3.1 (Hunke and Lipscomb 2010; Rae et al. 2015)
Sea ice model resolutionORCA 0.25
Sea ice model levels
Wave modelN/A
Wave model resolutionN/A

Detailed documentation: NEMO documentation, CICE documentation

3. Boundary conditions - climate forcings

Greenhouse gases
Ozone
Tropospheric aerosols
Volcanic aerosols
Solar forcing

Detailed documentation:

4. Initialization and initial condition (IC) perturbations

4.1 Atmosphere and land


HindcastForecast
Atmosphere initialization
ERA-Interim (Dee et al. 2011) ACCESS-G3, the Bureau’s 4D-Var analysis (Bureau of Meteorology 2019)
Atmosphere IC perturbationsSee Hudson et al 2017See Hudson et al 2017

Land Initialization

Climatological fields with weakly coupled data assimilationClimatological fields with weakly coupled data assimilation
Land IC perturbationsNoneNone
Soil moisture initializationClimatological fields with weakly coupled data assimilationClimatological fields with weakly coupled data assimilation
Snow initialization

Unperturbed control forecast?NoneNone

Data assimilation method for control analysis: 

Horizontal and vertical resolution of perturbations:  

Perturbations in +/- pairs: 

Detailed documentation:

4.2 Ocean and cryosphere


HindcastForecast
Ocean initializationEN4Bureau realtime ocean data assimilation (Wedd et al 2022
Ocean IC perturbationsNoNone
Unperturbed control forecast?NoNone

Detailed documentation:

 

5. Model Uncertainties perturbations:

Model dynamics perturbationsNone
Model physics perturbationsNone

If there is a control forecast, is it perturbed?

No control

Detailed documentation: 

6. Forecast system and hindcasts

Forecast frequencyDaily 
Forecast ensemble size

11 per day out to 6 months

22 per day out to 6 weeks

Hindcast yearsSeptember 1981- December 2018
Hindcast ensemble size

27-member time-lagged ensemble:

3 per start date out to 9 months back 9 days,

6 per start date out to 6 weeks back 3 days

On-the-fly or static hindcast set?Static
Calibration (bias correction) periodSeptember 1981- December 2018

7. Other relevant information


8. Where to find more information

ACCESS-S system:

Hudson D, Alves O, Hendon HH, Lim E, Liu G, Luo JJ, MacLachlan C, Marshall AG, Shi L, Wang G, Wedd R, Young G, Zhao M, Zhou X (2017) ACCESS-S1: The new Bureau of Meteorology multi-week to seasonal prediction system. Journal of Southern Hemisphere Earth Systems Science, 67:3 132-159 doi: 10.22499/3.6703.001.

Wedd R, Alves O, de Burgh-Day C, Down C, Griffiths M, Hendon HH, Hudson D, Li S, Lim E, Marshall AG, Shi L, Smith P, Smith G, Spillman CM, Wang G, Wheeler MC, Yan H, Yin Y, Young G, Zhao M, Yi X, Zhou X, (2022) ACCESS-S2: The upgraded Bureau of Meteorology multi-week to seasonal prediction system. Journal of Southern Hemisphere Earth System Science, 72 (3), 218-242.

Post-processing:

de Burgh-Day C, Griffiths M, Yan H, Young G, Hudson D, Alves O (2020) An adaptable framework for development and real time production of experimental sub-seasonal to seasonal forecast products, Bureau Research Report, No. 42. Bureau of Meteorology Australia.

Griffiths M, Smith P, Yan H, Spillman C, Young G, Hudson D (2023) ACCESS-S2: Updates and improvements to postprocessing pipeline Bureau Research Report, No. 082, Bureau of Meteorology Australia.

Other selected papers:

King AD, Hudson D, Lim, E-P, Marshall AG, Hendon HH, Lane TP, Alves O. (2020) Sub-seasonal to seasonal prediction of rainfall extremes in Australia. Quarterly Journal of the Royal Meteorological Societyhttps://doi.org/10.1002/qj.3789.

Lim E, Hudson DA, Wheeler M et al, (2021) Why Australia was Not Wet during Spring 2020 despite La NiñaScientific Reports. https://www.nature.com/articles/s41598-021-97690-w

Lim E, Hendon HH and co-authors, (2021) The 2019 Southern Hemisphere polar stratospheric warming and its impacts. Bulletin of the American Meteorological Society, https://doi.org/10.1175/BAMS-D-20-0112.1

Marshall AG, Gregory PA, de Burgh-Day CO, and Griffiths M, (2021) Subseasonal drivers of extreme fire weather in Australia and its prediction in ACCESS-S1 during spring and summer. Climate Dynamics. https://doi.org/10.1007/s00382-021-05920-8

Marshall AG, Wang G, Hendon HH and others (2023) Madden–Julian Oscillation teleconnections to Australian springtime temperature extremes and their prediction in ACCESS-S1. Climate Dynamics 61, 431–447. https://doi.org/10.1007/s00382-022-06586-6

Smith GA and Spillman CM (2024) Global ocean surface and subsurface temperature forecast skill over subseasonal to seasonal timescales. Journal of Southern Hemisphere Earth Systems Science, https://doi.org/10.1071/ES23020.

Spillman CM and Smith GA (2021) A New Operational Seasonal Thermal Stress Prediction Tool for Coral Reefs Around Australia. Frontiers in Marine Sciencehttps://doi.org/10.3389/fmars.2021.687833.





  • No labels