Metview's documentation is now on readthedocs!

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

Version 1 Next »

This tutorial demonstrates how to run a backward simulation with FLEXPART and how to visualise the results in various ways.

Using FLEXPART with Metview

Requirements

Please note that this tutorial requires Metview version 5.0 or later.

Preparations

First start Metview; at ECMWF, the command to use is metview (see Metview at ECMWF for details of Metview versions). You should see the main Metview desktop popping up.

The icons you will work with are already prepared for you - please download the following file:

Download

flexpart_tutorial.tar.gz

and save it in your $HOME/metview directory. You should see it appear on your main Metview desktop, from where you can right-click on it, then choose execute to extract the files.

Alternatively, if at ECMWF then you can copy it like this from the command line:
    cp -R /home/graphics/cgx/tutorials/flexpart_tutorial ~/metview

You should now (after a few seconds) see a flexpart_tutorial folder. Please open it up.

The input data

The input data is already prepared for you and is located in folder 'Data'. You will find a FLEXPART Prepare -old icon that was used to generate the data in folder 'Prepare'. The corresponding macro code can also be found there.

You do not need to run the data preparation. However, if you wish to do so please note that it requires MARS access and you must set the Output Path parameter accordingly.


Please enter folder 'backward' to start working.

We will simulate a volcano eruption by releasing some SO2 from the Icelandic volcano Eyjafjallajökull.

The simulation itself is defined by the 'fwd_conc' FLEXPART Run icon and the 'rel_volcano' FLEXPART Release icon, respectively. Both these are encompassed in a single macro called 'fw_cond.mv'. For simplicity will use this macro to examine the settings in detail. 

The macro starts with defining the release like this:

rel_volcano = flexpart_release(
    name            :   "VOLCANO", 
    starting_date   :   0,
    starting_time   :   15,
    ending_date     :   2,
    ending_time     :   12,
    area            :   [63.63,-19.6,63.63,-19.6],
    top_level       :   9000,
    bottom_level    :   1651,
    particle_count  :   10000,
    masses          :   1000000
    )

This says that the release will happen over a 45 h period between heights 1651 and 10000 m at the location of the volcano and we will release 1000 tons of material in total.

Please note that

  • the species is not defined here (will be defined in flexpart_run())
  • we used dates relative to the starting date of the simulation (see also in flexpart_run())

The actual simulation is carried out by calling flexpart_run():

#Run flexpart (asynchronous call!)
 
r = flexpart_run(
    output_path     	:   "result_fwd_conc",
    input_path      	:   "../data",
    starting_date   	:   20120517,
    starting_time   	:   12,
    ending_date     	:   20120519,
    ending_time     	:   12,
    output_field_type	:   "concentration",
    output_flux     	:   "on",
    output_trajectory   :   "on",
    output_area     	:   [40,-25,66,10],
    output_grid     	:   [0.25,0.25],
    output_levels   	:   [500,1000,2000,3000,4000,5000,6000,7000,8000,9000,10000,11000,12000,13000,14000,15000],
    release_species 	:   8,
    releases        	:   rel_volcano
    )
 
print(r)

Here we defined both the input and output path and specified the simulation period, the output grid and levels as well. We also told FLEXPART to generate gridded mass concentration and flux fields and plume trajectories on output..

The actual species that will be released is defined as an integer number (for details about using the species see here). With the default species settings number 8 stands for SO2.

If we run this macro (or alternatively right-click execute the FLEXPART Run icon) the results (after a minute or so) will be available in folder 'result_fw_conc'. The computations were actually taken place in a temporary folder then metview copied the results to the output folder. If we open this older we will see two files there:

  • conc_s001.grib is a GRIB file containing the gridded concentration fields
  • flux_s001.grib is a GRIB file containing the gridded flux fields
  • tr_r1.csv is a CSV file containing the plume trajectories

Please note that these are not the original outputs form FLEXTRA but were converted to formats more suitable for use in Metview. For details about the FLEXPART outputs please click here.

  • No labels