This page provides an overview of regional forecast skill for the DJF 2025 period. Forecast scores are updated automatically every week throughout the competitive period. The current data includes 7 forecasts initialized between Thursday 13th November 2025 and Thursday 25th December 2025 (inclusive). For a detailed description of the outputs, please refer to the section's overview.

Regional skill score files

All regional RPSSs are available to download via the following link:

DJF 2025 Regional RPSSs (Excel format)

Regional scores for the top 10 teams of global, period-aggregated, variable-averaged RPSSs

Team nameTeam rankModel nameModel rankGlobalTropicsNHem. ExTro.SHem. ExTro.NHem. PolarSHem. PolarEuropeN. Amer.S. Amer.AfricaAsiaOceania
MicroEnsemble1MicroDuet10.0710.0920.0770.0450.0270.0360.0360.0980.0050.1240.080.022
MicroEnsemble1StillLearning20.0650.080.0820.0460.0320.0250.0370.1020.0020.1180.0790.017
MicroEnsemble1Huracan50.0460.0460.0680.0060.0360.0150.0280.112-0.0470.0550.053-0.002
LP2LPM30.0480.0610.0760.0060.043-0.0170.0190.127-0.0410.0850.0540.005
AIFS3AIFShera40.0460.040.076-0.020.0670.020.0290.105-0.0380.0760.073-0.029
AIFS3AIFSgaia60.0390.0350.081-0.0020.029-0.014-0.0050.125-0.0460.0660.065-0.002
AIFS3AIFSthalassa70.0380.0230.0760.0130.0570.0030.0120.107-0.0530.0380.0630.021
CMAandFDU4FengshunHybrid80.0350.0430.058-0.0040.041-0.0160.0280.077-0.0190.070.056-0.018
CMAandFDU4FengshunAdjust90.0250.0350.033-0.0010.004-0.00.0110.012-0.0050.0840.04-0.021
CMAandFDU4Fengshun16-0.007-0.0150.018-0.008-0.015-0.0380.002-0.032-0.0470.0320.034-0.083
UWAtmosNVIDIA5DLESyMS2Sv1100.0090.0110.0130.0080.0140.002-0.0130.035-0.0030.022-0.004-0.009
CliMA6CliMAWeather2110.0070.0110.0110.0080.0-0.0250.003-0.013-0.0130.0420.023-0.035
CliMA6CliMAWeather19-0.03-0.036-0.016-0.039-0.031-0.043-0.021-0.035-0.09-0.011-0.011-0.061
KITKangu7KanguS2SEasyUQ120.0-0.00.0-0.00.00.00.00.0-0.0-0.00.0-0.0
KITKangu7KanguPlusPlus120.0-0.00.0-0.00.00.00.00.0-0.0-0.00.0-0.0
KITKangu7KanguParametricPrediction120.0-0.00.0-0.00.00.00.00.0-0.0-0.00.0-0.0
scienceAI8zephyr15-0.005-0.0270.0180.016-0.00.031-0.0070.034-0.052-0.046-0.0-0.036
scienceAI8findforecast17-0.01-0.0120.0030.01-0.025-0.04-0.0180.001-0.033-0.02-0.005-0.003
scienceAI8ngcm18-0.019-0.030.0090.016-0.018-0.06-0.0090.008-0.037-0.063-0.001-0.014
FengWuW2S9FengWu220-0.041-0.0940.0130.0220.018-0.055-0.043-0.029-0.113-0.037-0.017-0.079
FengWuW2S9FengWu21-0.046-0.090.006-0.0080.004-0.055-0.043-0.023-0.134-0.026-0.034-0.07
FengWuW2S9FengWu323-0.05-0.1110.017-0.018-0.002-0.008-0.014-0.022-0.132-0.02-0.022-0.129
JR10slowMamba22-0.047-0.072-0.003-0.033-0.008-0.0830.004-0.028-0.134-0.03-0.009-0.126
Team nameTeam rankModel nameModel rankGlobalTropicsNHem. ExTro.SHem. ExTro.NHem. PolarSHem. PolarEuropeN. Amer.S. Amer.AfricaAsiaOceania
MicroEnsemble1MicroDuet10.0480.0610.0580.0160.0370.0030.0220.060.0040.0970.065-0.004
MicroEnsemble1StillLearning20.0420.0510.0590.0180.043-0.0170.0230.0620.0010.0940.057-0.009
MicroEnsemble1Huracan40.0230.010.055-0.020.052-0.0260.040.057-0.0390.0180.049-0.036
LP2LPM30.0270.0290.064-0.0160.066-0.0850.0370.073-0.0140.0510.056-0.024
CMAandFDU3FengshunHybrid50.0180.010.042-0.0130.053-0.0210.0290.04-0.0380.0480.039-0.024
CMAandFDU3FengshunAdjust80.003-0.0040.028-0.0120.027-0.023-0.0070.013-0.0080.050.024-0.056
CMAandFDU3Fengshun16-0.018-0.028-0.001-0.0290.018-0.041-0.051-0.035-0.037-0.0030.033-0.105
AIFS4AIFShera60.017-0.0010.057-0.020.049-0.0110.0420.042-0.0120.0490.059-0.067
AIFS4AIFSgaia70.014-0.00.054-0.0140.031-0.0210.0090.067-0.0170.0390.042-0.053
AIFS4AIFSthalassa18-0.026-0.0860.045-0.0280.046-0.0390.0210.059-0.159-0.0840.024-0.04
CliMA5CliMAWeather290.0030.0020.010.00.003-0.003-0.007-0.005-0.0420.0220.014-0.01
CliMA5CliMAWeather19-0.032-0.042-0.021-0.036-0.034-0.002-0.022-0.045-0.089-0.011-0.016-0.048
KITKangu6KanguS2SEasyUQ100.0-0.00.0-0.00.00.00.00.0-0.0-0.00.0-0.0
KITKangu6KanguPlusPlus100.0-0.00.0-0.00.00.00.00.0-0.0-0.00.0-0.0
KITKangu6KanguParametricPrediction100.0-0.00.0-0.00.00.00.00.0-0.0-0.00.0-0.0
scienceAI7findforecast13-0.002-0.0060.0090.0050.002-0.017-0.0440.02-0.02-0.016-0.0030.002
scienceAI7zephyr15-0.01-0.0280.0070.0110.015-0.004-0.0240.026-0.028-0.031-0.012-0.043
scienceAI7ngcm17-0.019-0.0420.0080.010.017-0.028-0.0220.007-0.026-0.045-0.007-0.024
UWAtmosNVIDIA8DLESyMS2Sv114-0.003-0.0130.021-0.006-0.0-0.0240.0040.014-0.0110.0190.003-0.043
FengWuW2S9FengWu320-0.055-0.073-0.029-0.02-0.023-0.109-0.0470.01-0.126-0.047-0.064-0.08
FengWuW2S9FengWu23-0.084-0.161-0.018-0.0210.008-0.046-0.043-0.044-0.183-0.095-0.069-0.122
FengWuW2S9FengWu224-0.087-0.15-0.032-0.0260.024-0.102-0.068-0.056-0.171-0.082-0.06-0.099
JR10slowMamba21-0.061-0.092-0.02-0.043-0.017-0.0840.015-0.098-0.113-0.0510.001-0.112

Figures showing aggregated RPSSs for best-performing model from top 10 teams

Figures showing evolution of skill scores

Figures showing percentage of grid points with positive period-aggregated RPSSs

Figures showing observed conditions with respect to defined ERA5 climatology

  • No labels