1. Forecast system version

Identifier code: Météo-France System 9First operational forecast run: May 2025

2. Configuration of the forecast model

Is the model coupled to an ocean model?   Yes
Coupling frequency: 1 hour

2.1 Atmosphere and land surface

Model

ARPEGE v6.5
(atmosphere)

SURFEX v8.0
(land surface)

Horizontal resolution and gridTL359; 0.5° reduced Gauss grid
Atmosphere vertical resolution137 layers
Top of atmospheretop layer 1 Pa
Soil levels (layers)14

Layer 1   : 0 - 0.01 m
Layer 2   : 0.01 - 0.04
Layer 3   : 0.04 – 0.1 m
Layer 4   : 0.1 – 0.2 m
Layer 5   : 0.2 – 0.4 m
Layer 6   : 0.4 – 0.6 m
Layer 7   : 0.6 – 0.8 m
Layer 8   : 0.8 – 1.0 m
Layer 9   : 1.0 – 1.5 m
Layer 10 : 1.5 – 2.0 m
Layer 11 : 2.0 – 3.0 m
Layer 12 : 3.0 – 5.0 m
Layer 13 : 5.0 – 8.0 m
Layer 14 : 8.0 – 12.0 m

Time step10 min


Detailed documentation:

ARPEGE: 
Reference paper (older version v6.3): Roehrig, R. et al. (2020). The CNRM global atmosphere model ARPEGE-Climat 6.3: Description and evaluation. Journal of Advances in Modeling Earth Systems, 12, e2020MS002075.
Technical documentation (older version v6.2): http://www.umr-cnrm.fr/IMG/pdf/arp62ca.july2017.pdf

SURFEX: 
Voldoire, A. et al. (2017). SURFEX v8.0 interface with OASIS3-MCT to couple atmosphere with hydrology, ocean, waves and sea-ice models, from coastal to global scales. Geoscientific Model Development, 10(11), 4207–4227.
Decharme, B. et al. (2019) Recent Changes in the ISBA-CTRIP Land Surface System for Use in the CNRM- CM6 Climate Model and in Global Off-Line Hydrological Applications. Journal of Advances in Modeling Earth Systems, 2018MS001545.
Technical documentation: http://www.umr-cnrm.fr/surfex//IMG/pdf/surfex_scidoc_v8.1.pdf

2.2 Ocean and cryosphere

Ocean modelNEMO v4.2.0
Horizontal resolution0.25° ORCA grid
Vertical resolution75 levels
Time step15 min
Sea ice modelSI3
Sea ice model resolution0.25° ORCA grid
Sea ice model levels5
Wave modelNone
Wave model resolutionNA


Detailed documentation:

NEMO: Madec et al. (2022). NEMO ocean engine reference manual. Zenodo. https://doi.org/10.5281/zenodo.6334656
SI3Vancoppenolle et al. (2023). NEMO Sea Ice Engine (SI3). Zenodo. https://doi.org/10.5281/zenodo.7534900

3. Boundary conditions - climate forcings

Most forcing data comes from the CMIP6 protocol for CNRM-CM6 as described by Voldoire et al. (2019).

Greenhouse gasesUp to 2014, CMIP6 historical values of CO2, CH4, N2O, CFC11 and CFC12 from Meinshausen et al. (2017). From 2015 onwards, greenhouse gas forcings follow the SSP2-4.5 scenario from Meinshausen et al. (2020).
OzoneRadiation scheme sees a seasonally varying but otherwise fixed climatological ozone field. The monthly climatology of ozone concentration is the 1995-2014 average from a preliminary freely-evolving historical CMIP6 run by Michou et al (2020).
Tropospheric aerosolsSeasonally-varying tropospheric aerosol concentrations computed as 11-year moving averages from the preliminary freely-evolving run by Michou et al. (2020) using the interactive aerosol scheme TACTIC_v2 scheme.
The Michou et al (2020) run has CMIP6 historical forcings up to 2014 and the SSP2-4.5 forcings from 2015 onwards.
Volcanic aerosolsVolcanic stratospheric aerosols are the official CMIP6 forcings provided by Thomason et al (2018).
Solar forcingTime-variation of total solar insolation (TSI) is specified from CMIP6 annual mean forcings provided by Matthes et al (2017)


Detailed documentation:

Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau, P., et al. (2017). Solar forcing for CMIP6 (v3.2). Geoscientific Model Development, 10(6), 2247–2302. https://doi.org/10.5194/gmd‐10‐2247‐2017
Meinshausen, M. et al. (2017). Historical greenhouse gas concentrations for climate modelling (CMIP6). Geoscientific Model Development, 10(5), 2057–2116. https://doi.org/10.5194/gmd-10-2057-2017
Meinshausen, M. et al. (2020). The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development, 13, 3571–3605. https://doi.org/10.5194/gmd-13-3571-2020
Michou, M., Nabat, P., Saint-Martin, D., Bock, J., Decharme, B., Mallet, M., Roehrig, R., Séférian, R., Sénési, S. and Voldoire, A. (2020). Present-day and historical aerosol and ozone characteristcs in CNRM CMIP6 simulatons. Journal of Advances in Modeling Earth Systems, 12, e2019MS001816, https://doi.org/10.1029/2019MS001816
Thomason, L. W., Ernest, N., Millán, L., Rieger, L., Bourassa, A., Vernier, J. P., et al. (2018). A global space‐based stratospheric aerosol climatology: 1979–2016. Earth System Science Data, 10(1), 469–492. https://doi.org/10.5194/essd‐10‐469‐2018
Voldoire, A., Saint-Martn, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., et al (2019). Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. Journal of Advances in Modeling Earth Systems, 11. https://doi.org/10.1029/2019MS001683

4. Initialization and initial condition (IC) perturbations

4.1 Atmosphere and land


HindcastForecast
Atmosphere initialization
ERA5ERA5T
Atmosphere IC perturbationsNoneNone

Land Initialization

ERA5ERA5T
Land IC perturbationsNoneNone
Soil moisture initializationERA5ERA5T
Snow initializationERA5ERA5T
Unperturbed control forecast?NANA


Detailed documentation: 
ERA5: data documentation

4.2 Ocean and cryosphere


HindcastForecast
Ocean initialization

GLORYS12V1
MERCATOR-OCEAN

GLO12
MERCATOR-OCEAN

Ocean IC perturbationsNoneNone
Unperturbed control forecast?NANA


Detailed documentation:
GLORYS12V1. E.U. Copernicus Marine Service Information (CMEMS). Marine Data Store (MDS). https://doi.org/10.48670/moi-00021
GLO12. E.U. Copernicus Marine Service Information (CMEMS). Marine Data Store (MDS). https://doi.org/10.48670/moi-00016 

5. Model Uncertainties perturbations:

Model dynamics perturbationsYes
Model physics perturbationsNo

If there is a control forecast, is it perturbed?

NA


Detailed documentation: 
Batté, L. and Déqué, M. (2016). Randomly correcting model errors in the ARPEGE-Climate v6. 1 component of CNRM-CM: applications for seasonal forecasts. Geoscientific Model Development, 9, 2055-2076. https://doi.org/10.5194/gmd-9-2055-2016

6. Forecast system and hindcasts

Forecast frequency1 month
Forecast ensemble size51
Hindcast years1993-2024
Hindcast ensemble size31
On-the-fly or static hindcast set?static
Calibration (bias correction) periodNA

7. Other relevant information

Ensemble start dates

The forecast uses three start dates:

  • The penultimate Thursday of the previous month (25 members in the forecasts, 15 members in the hindcasts)
  • The last Thursday of the previous month (25 members in the forecasts, 15 members in the hindcasts)
  • the 1st of the month (1 member in the forecast/hindcast)
Data assimilation method for analysis

The atmosphere and land surface are initialized with ERA5 data (ERA5T in real-time), such that they use the ERA5 data assimilation performed by ECMWF.
Ocean and sea-ice initial conditions are provided by a stand-alone NEMO 4.2 - SI3 run that is forced by ERA5(T) at the surface and nudged towards the GLORYS12V1 reanalysis (GLO12 analysis in real-time) in temperature and salinity.

Interpolation details

Météo-France System 9 is built on the CNRM-CM coupled climate model which embeds an output manager called the XIOS server (Meurdesoif et al, 2018). XIOS is an input/output parallel server software enabling to perform online field operations in the course of the model integration and writing the final result on NetCDF files. For atmosphere and land surface data, all operations such as time sampling, time averaging, horizontal regridding or vertical interpolation are specified through xml files and performed by XIOS such that no or little post-processing is needed: the only output files written on disk are the files featuring the requested C3S 1°x1° horizontal grid and pressure levels. For ocean and sea-ice data, the output files are written by XIOS on the native NEMO grid and remapped on the C3S 1°x1° horizontal grid throug post-processing, using the cdo "remapdis" function.

Horizontal Interpolation

The ARPEGE atmospheric model is a spectral model, and horizontal fields such as temperature or geopotential are originally computed as spherical harmonic coefficients, but can be converted into grid point data on the corresponding reduced Gaussian grid (e.g 0.5° reduced Gaussian grid for Tl359 spectral resolution) using an internal function of the model. The XIOS server can perform online interpolation of this grid point data on any user specified grid such as the rectilinear C3S 1°x1° grid. The interpolation of atmospheric data by XIOS is a first-order conservative remapping. As for the oceanic fields from NEMO, they are first output on the native model grid, and remapped using a bilinear interpolation.

Vertical interpolation

ARPEGE uses sigma coordinates in the vertical, meaning that near-surface model levels follow the orography. Transformation into data on pressure levels is done directly on request by ARPEGE through a linear interpolation, or linear extrapolation for data below the surface.

Meurdesoif, Y. (2018) XIOS fortran reference guide. IPSL http://forge.ipsl.jussieu.fr/ioserver/svn/XIOS/trunk/doc/XIOS_reference_guide.pdf

8. Where to find more information

Technical implementation details can be found in LINK TO BE PROVIDED