This page provides an overview of regional forecast skill for the SON 2025 period. Forecast scores are updated automatically every week throughout the competitive period. The current data includes 1 2 forecasts initialized between Thursday 14th August 2025 and Thursday 14th 21st August 2025 (inclusive). For a detailed description of the outputs, please refer to the section's overview.
...
| Expand |
|---|
| title | Forecast window 1 (days 19 to 25) |
|---|
|
| Team name | Team rank | Model name | Model rank | Global | Tropics | NHem. ExTro. | SHem. ExTro. | NHem. Polar | SHem. Polar | Europe | N. Amer. | S. Amer. | Africa | Asia | Oceania |
|---|
| AIFSCMAandFDU | 1 | AIFSheraFengshunAdjust | 1 | 0.087086 | 0.108169 | 0.083023 | -0.059006 | 0.044002 | -0.024059 | 0.092036 | -0.028006 | 0.05515 | 0.057119 | 0.147105 | 0.06113 | | AIFSCMAandFDU | 1 | AIFSgaiaFengshunHybrid | 32 | 0.081072 | 0.133132 | 0.05026 | -0.080 | 0.034028 | -0.024033 | 0.091038 | -0.074008- | 0.03035 | 0.139123 | 0.156116 | 0.035057 | | AIFSCMAandFDU | 1 | AIFSthalassaFengshun | 610 | 0.075016 | 0.129055 | -0.037006 | -0.127075 | 0.029032 | -0.05067 | 0.039021 | -0.046029- | 0.11302 | -0.128037 | 0.129083 | 0.06106 | | CMAandFDUMicroEnsemble | 2 | FengshunAdjustStillLearning | 23 | 0.085072 | 0.171104 | 0.015046 | -0.073027 | 0.00503 | -0.022024 | 0.063067 | -0.02401 | 0.095038 | 0.054096 | 0.113105 | 0.053071 | | CMAandFDUMicroEnsemble | 2 | FengshunHybridMicroDuet | 74 | 0.064072 | 0.125105 | 0.002041 | -0.047026 | 0.046031 | -0.02103 | 0.037061 | -0.0260- | 0.064037 | 0.107063 | 0.122106 | -0.023077 | | CMAandFDUMicroEnsemble | 2 | FengshunHuracan | 109 | 0.035036 | 0.086034 | -0.006039- | 0.082006 | 0.048018 | -0.041022 | 0.066056 | -0.041009 | -0.008038 | -0.03035 | 0.083 | 0.104033 | | MicroEnsembleAIFS | 3 | MicroDuetAIFSgaia | 45 | 0.077065 | 0.108097 | 0.049032 | -0.022011 | 0.032043 | -0.065009 | 0.105079 | -0.002069- | 0.01903 | 0.063094 | 0.109113 | 0.092037 | | MicroEnsembleAIFS | 3 | StillLearningAIFShera | 56 | 0.077065 | 0.102082 | 0.058044 | -0.009001 | 0.04032 | 0.06401 | 0.119077 | -0.004053- | 0.002083 | 0.056045 | 0.113106 | 0.082078 | | MicroEnsembleAIFS | 3 | HuracanAIFSthalassa | 98 | 0.047048 | 0.044082 | 0.06013 | -0.045038 | 0.02028 | -0.069055 | 0.104026 | -0.005064- | 0.09005 | -0.015067 | 0.099096 | -0.04024 | | LP | 4 | LPM | 87 | 0.062061 | 0.08308 | 0.061055 | -0.014038 | 0.024015 | -0.017003 | 0.087065 | -0.019002 | 0.032033 | 0.021041 | 0.092103 | -0.021031 | | KITKangu | 5 | KanguPlusPlus | 11 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | | KITKangu | 5 | KanguParametricPrediction | 11 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | | scienceAI | 5 | findforecast | 11 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | | scienceAI | 5 | zephyr | 11 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | | scienceAI | 5 | ngcm | 11 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | | KITKangu | 5 | KanguS2SEasyUQ | 3938 | -1.23528 | -1.34373 | -1.045141 | -1.357284 | -1.094169 | -1.265235 | -1.194095 | -01.876036 | -1.493403 | -1.44637 | -1.178222 | -1.673826 | | CliMA | 7 | CliMAWeather2 | CliMAWeather | 16 | -0.075 | -0.092 | -0.09 | -0.192 | -0.038 | 0.046 | -0.066 | -0.109 | -0.144 | -0.159 | -0.065 | -0.012 | | CliMA | 7 | CliMAWeather | 17 | -0.078 | -0.095 | -0.095 | -0.197 | -0.042 | 0.045 | -0.069 | -0.113 | -0.143 | -0.163 | -0.07 | -0.019 | | WindBorne | 8 | WeatherMesh | 1816 | -0.04179 | -0.039128 | -0.052237 | -0.24189 | -0.037207 | -0.063337 | -0.011244 | -0.087244 | -0.151139 | -0.024196 | -0.019176 | -0.137183 | | CliMAFengWuW2S | 79 | CliMAWeather2FengWu2 | 1719 | -0.04275 | -0.041172 | -0.049467 | -0.238154 | -0.039396 | -0.068224 | -0.008509 | -0.086109 | -0.159056 | -0.025344 | -0.017564 | -0.129245 | | WindBorneFengWuW2S | 89 | WeatherMeshFengWu | 1822 | -0.125305 | -0.082381 | -0.206323 | -0.259236 | -0.153181 | -0.132103 | -0.202308 | -0.187199 | -0.14416 | -0.184512 | -0.141412 | -0.3583 | | FengWuW2SNordicS2S | 910 | FengWu2NordicS2S1 | 1920 | -0.26285 | -0.135208 | -0.434372 | -0.255324 | -0.471185 | -0.2539 | -0.732241 | -0.042326 | -0.124226 | -0.452257 | -0.491198 | -0.126399 | | FengWuW2SNordicS2S | 910 | FengWuNordicS2S3 | 2223 | -0.33421 | -0.385397 | -0.331506 | -0.388378 | -0.27379 | -0.177414 | -0.462409 | -0.162445 | -0.524516 | -0.62942 | -0.393387 | -0.26954 | | SibylNordicS2S | 10 | ClimSDENordicS2S2 | 2029 | -0.298573 | -0.344634 | -0.306611 | -0.515445 | -0.19418 | -0.364387 | -0.277308 | -0.186715 | -0.2882 | -0.519534 | -0.315535 | -0.57266 |
|
| Expand |
|---|
| title | Forecast window 2 (days 26 to 32) |
|---|
|
| Team name | Team rank | Model name | Model rank | Global | Tropics | NHem. ExTro. | SHem. ExTro. | NHem. Polar | SHem. Polar | Europe | N. Amer. | S. Amer. | Africa | Asia | Oceania |
|---|
| CMAandFDUMicroEnsemble | 1 | FengshunAdjustStillLearning | 1 | 0.061054 | 0.117094 | 0.029026 | 0.002033 | 0.033044 | -0.014001 | 0.003048 | 0.058026 | 0.133089 | 0.11068 | 0.072048 | 0.129123 | | CMAandFDUMicroEnsemble | 1 | FengshunHybridMicroDuet | 2 | 0.053052 | 0.08087 | 0.03202 | 0.028053 | 0.025039 | 0.02019 | 0.01038 | 0.027047 | 0.06101 | 0.065034 | 0.077043 | 0.047107 | | CMAandFDUMicroEnsemble | 1 | FengshunHuracan | 147 | -0.002016 | 0.001022 | 0.006002 | 0.029057 | 0.053031 | -0.08005 | 0.006032 | -0.02404 | 0.007047 | -0.077052 | 0.0420 | 0.078065 | | MicroEnsembleCMAandFDU | 2 | StillLearningFengshunHybrid | 3 | 0.051048 | 0.099075 | 0.006036 | 0.039022 | 0.045009 | -0.022025- | 0.019045 | 0.01903 | 0.095045 | 0.083063 | 0.055056 | 0.094069 | | MicroEnsembleCMAandFDU | 2 | MicroDuetFengshunAdjust | 4 | 0.045046 | 0.08708 | 0.0035 | 0.047019 | 0.042017 | -0.013014- | 0.026039 | 0.046048 | 0.114065 | 0.017051 | 0.044053 | 0.103131 | | MicroEnsembleCMAandFDU | 2 | HuracanFengshun | 89 | 0.009005 | 0.021018 | -0.01701 | 0.053016 | 0.032013 | -0.044031- | 0.04702 | -0.032017 | -0.048002 | -0.06014 | 0.001032 | 0.059069 | | LP | 3 | LPM | 5 | 0.036 | 0.056065 | 0.026018 | 0.044018 | 0.022032 | -0.059026- | 0.002024 | 0.036047 | 0.077051 | 0.024031 | 0.066043 | 0.006058 | | AIFS | 4 | AIFSgaia | 6 | 0.024025 | 0.04046 | -0.013004 | 0.032024 | 0.029012 | 0.029009 | -0.017031 | -0.051004 | 0.118083 | 0.009016 | 0.033018 | 0.009033 | | AIFS | 4 | AIFShera | 78 | 0.009012 | 0.014023 | -0.02004 | 0.005023 | 0.045015 | -0.015013 | 0.009036 | -0.083038 | 0.078075 | -0.007003 | 0.019007 | 0.061051 | | AIFS | 4 | AIFSthalassa | 1510 | -0.005002 | -0.02801 | 0.0007 | -0.007004 | 0.021012 | 0.026012 | 0.01302 | -0.046002 | 0.04011 | -0.08061 | 0.03009 | -0.117011 | | KITKangu | 5 | KanguPlusPlus | 911 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | | KITKangu | 5 | KanguParametricPrediction | 911 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | | scienceAI | 5 | findforecast | 911 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | | scienceAI | 5 | zephyr | 911 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | | scienceAI | 5 | ngcm | 911 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | -0.0 | | KITKangu | 5 | KanguS2SEasyUQ | 3938 | -1.39419 | -1.441522 | -1.309373 | -01.86109 | -1.343149 | -1.442365 | -1.219237 | -1.261406 | -1.532511 | -1.509626 | -1.364306 | -1.174299 | | CliMA | 7 | CliMAWeather | 16 | -0.1173 | -0.138221 | -0.114203 | -0.127181 | -0.031094 | -0.024026 | -0.122101 | -0.12103 | -0.117155 | -0.269391 | -0.103247 | -0.089106 | | CliMA | 7 | CliMAWeather2 | 17 | -0.106181 | -0.142227 | -0.123214 | -0.138192 | -0.0371 | -0.02033 | -0.134113 | -0.133111 | -0.13171 | -0.278408 | -0.102251 | -0.09105 | | FengWuW2SNordicS2S | 8 | FengWu2NordicS2S1 | 18 | -0.26425 | -0.203279 | -0.457192 | -0.0082 | -0.308153 | -0.054319 | -0.301176 | -0.058146 | -0.098284 | -0.276444 | -0.616195 | -0.282228 | | FengWuW2SNordicS2S | 8 | FengWuNordicS2S3 | 2024 | -0.35473 | -0.476701 | -0.363245 | -0.10614 | -0.205275 | -0.007396 | -0.271214 | -0.139431 | -0.587649 | -0.678821 | -0.472338 | -0.333485 | | NordicS2S | 98 | NordicS2S1NordicS2S2 | 1929 | -0.315581 | -0.34269 | -0.24602 | -0.25498 | -0.161299 | -0.439355 | -0.153416 | -0.165628 | -0.283671 | -0.584849 | -0.259465 | -0.272378 | | NordicS2SFengWuW2S | 9 | NordicS2S3FengWu2 | 2719 | -0.527255 | -0.778224 | -0.28437- | 0.111032 | -0.328256- | 0.427018 | -0.321264 | -0.477212 | -0.704066 | -0.923257 | -0.413529 | -0.589247 | | NordicS2SFengWuW2S | 9 | NordicS2S2FengWu | 2920 | -0.606305 | -0.731408 | -0.654315 | -0.764035 | -0.222138 | -0.092107 | -0.37174 | -0.669214 | -0.78411 | -0.854517 | -0.503398 | -0.5533 | | SibylHAPPY | 10 | ClimSDEAZN | 21 | -0.386418 | -0.392493 | -0.319407 | -0.779788 | -0.261226 | -0.506179 | -0.276326 | -0.345478 | -0.634761 | -0.409353 | -0.22311 | -0.299654 |
|
Figures showing aggregated RPSSs for best-performing model from top 10 teams
| Expand |
|---|
| title | Near-surface air temperature (tas), forecast window 1 (days 19 to 25) |
|---|
|
Image Removed Image Added |
| Expand |
|---|
| title | Near-surface air temperature (tas), forecast window 2 (days 26 to 32) |
|---|
|
Image Removed Image Added |
| Expand |
|---|
| title | Mean sea level pressure (mslp), forecast window 1 (days 19 to 25) |
|---|
|
Image Removed Image Added |
| Expand |
|---|
| title | Mean sea level pressure (mslp), forecast window 2 (days 26 to 32) |
|---|
|
Image Removed Image Added |
| Expand |
|---|
| title | Accumulated precipitation (pr), forecast window 1 (days 19 to 25) |
|---|
|
Image Removed Image Added |
| Expand |
|---|
| title | Accumulated precipitation (pr), forecast window 2 (days 26 to 32) |
|---|
|
Image Removed Image Added |
Figures showing percentage of grid points with positive period-aggregated RPSSs
| Expand |
|---|
| title | Near-surface air temperature (tas), forecast window 1 (days 19 to 25) |
|---|
|
Image Removed Image Added |
| Expand |
|---|
| title | Near-surface air temperature (tas), forecast window 2 (days 26 to 32) |
|---|
|
Image Removed Image Added |
| Expand |
|---|
| title | Mean sea level pressure (mslp), forecast window 1 (days 19 to 25) |
|---|
|
Image Removed Image Added |
| Expand |
|---|
| title | Mean sea level pressure (mslp), forecast window 2 (days 26 to 32) |
|---|
|
Image Removed Image Added |
| Expand |
|---|
| title | Accumulated precipitation (pr), forecast window 1 (days 19 to 25) |
|---|
|
Image Removed Image Added |
| Expand |
|---|
| title | Accumulated precipitation (pr), forecast window 2 (days 26 to 32) |
|---|
|
Image Removed Image Added |
Figures showing observed conditions with respect to defined ERA5 climatology
| Expand |
|---|
| title | Near-surface air temperature (tas), forecast window 1 (days 19 to 25) |
|---|
|
Image Removed Image Added |
| Expand |
|---|
| title | Near-surface air temperature (tas), forecast window 2 (days 26 to 32) |
|---|
|
Image Removed Image Added |
| Expand |
|---|
| title | Mean sea level pressure (mslp), forecast window 1 (days 19 to 25) |
|---|
|
Image Removed Image Added |
| Expand |
|---|
| title | Mean sea level pressure (mslp), forecast window 2 (days 26 to 32) |
|---|
|
Image Removed Image Added |
| Expand |
|---|
| title | Accumulated precipitation (pr), forecast window 1 (days 19 to 25) |
|---|
|
Image Removed Image Added |
| Expand |
|---|
| title | Accumulated precipitation (pr), forecast window 2 (days 26 to 32) |
|---|
|
Image Removed Image Added |