You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 3 Next »

1. Forecast system version

System name: GloSea6-GC3.2

First operational forecast run:  2 Feb 2021

2. Configuration of the forecast model

Is it a coupled model?  Yes: Atmosphere, land, ocean and sea-ice.

Coupling frequency:  Hourly coupling between atmosphere-land and ocean-sea-ice.

The coupled model Global Coupled 3.2 (GC3.2) is described in Williams et al, 2019.

2.1 Atmosphere and land surface

Model

Met Office Unified Model (UM) - Global Atmosphere 7.2

Joint UK Land Environment Simulator (JULES) - Global Land 8.0

Horizontal resolution and gridN216: 0.83 degrees x 0.56 degrees (approx 60km in mid-latitudes)
Atmosphere vertical resolution85 levels
Top of atmosphere85km
Soil levels

4

Level 1 : 0 - 0.1 m

Level 2 : 0.1 - 0.35

Level 3 : 0.35 - 1.0 m

Level 4 : 1.0 - 3.0 m

Time step15 minutes

Detailed documentation:

JULES documentation

Global Atmosphere 7.0/7.1 & Global Land 7.0: Walters et al, 2017


2.2 Ocean and cryosphere

Ocean model

NEMO v3.6 - Global Ocean 6.0

Horizontal resolutionORCA 0.25
Vertical resolutionL75
Time step20 minutes
Sea ice model

CICE v5.1.2 - Global Sea-Ice 8.1

Sea ice model resolutionORCA 0.25
Sea ice model levels5 categories + open water
Wave modelN/A
Wave model resolutionN/A

Detailed documentation: NEMO documentation, CICE documentation

Global Ocean 6.0: Storkey et al, 2017.

Global Sea Ice 8.0:  Ridley et al, 2017

3. Initialization and initial condition (IC) perturbations

3.1 Atmosphere and land


HindcastForecast
Atmosphere initialization
ERA-InterimMet Office Global Hybrid 4D-VAR
Atmosphere IC perturbationsNoneNone
Soil moisture & temperature  initializationMet Office JULES-JRA55 analysisMet Office JULES-JRA55 analysis
Snow initialization

 Met Office JULES-JRA55 analysis

Met Office JULES-JRA55 analysis
Unperturbed control forecast?NoNo

Detailed documentation:

Met Office Global Hybrid 4D-VAR: Clayton et al, 2013

JRA55 analysis:  Kobayashi et al. 2015, Kobayashi et al. 2016

3.2 Ocean and cryosphere


HindcastForecast
Ocean initializationGloSea Ocean Sea-Ice Analysis (GS-OSIA)Forecast Ocean Assimilation Model (FOAM)
Ocean IC perturbationsNoNo
Unperturbed control forecast?NoNo

Detailed documentation:

The GS-OSIA and the FOAM system both use the Nucleus for European Modelling of the Ocean data assimilation system (NEMOVAR). This is a 3d-VAR data assimilation scheme. The GS-OSIA uses different surface forcing (ERA-interim) and observation sets as it is a historical analysis. FOAM uses surface forcing from the Met Office Global NWP model and real-time observations.

The common NEMOVAR system is described in Blockley et al, 2014. Details of the GS-OSIA can be found in MacLachlan et al, 2015.


4. Model uncertainties perturbations:

Model dynamics perturbationsNone
Model physics perturbationsAtmosphere stochastic physics scheme, SKEB2

If there is a control forecast, is it perturbed?

No control

Detailed documentation:

SKEB2: Bowler et al, 2009


5. Forecast system and hindcasts


Forecast frequencydaily
Forecast ensemble size2 per day
Hindcast years24 (1993-2016)
Hindcast ensemble size7 per start date
Hindcast start dates1, 9, 17, 25 of each month
On-the-fly or static hindcast set?on-the-fly


6. Where to find more information

GloSea5 system:

Model description references:

  • Ridley, J., Blockley, E., Keen, A., Rae, J., Schroder, D., West, A., & Schroeder, D. (2017). The sea ice model component of HadGEM3‐GC3.1. Geoscientific Model Development. https://doi.org/10.5194/gmd-2017-212
  • Storkey, D., Megann, A., Mathiot, P., Sinha, B., Calvert, D., Hewitt, H., Blaker, A., Kuhlbrodt, T., Graham, T., & Hyder, P. (2017). UK Global Ocean GO6 and GO7: A traceable hierarchy of model resolutions. Geoscientific Model Development. https://doi.org/10.5194/gmd-2017-263
  • Walters, D. N., A., Baran, I., Boutle, M. E., Brooks, P., Earnshaw, J., Edwards, K., Furtado, K., Hil,l P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jone,s A., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams K.,  Zerroukat, M, (2017). The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geoscientific Model Development. https://doi.org/10.5194/gmd-2017-291
  • Williams, K. D., Copsey, D., ​Blockley, E.W., Bodas-Salcedo, A., Calvert, D.,  Comer, R., Davis, P., Graham, T., Hewitt, H. T., Hill, R., Hyder P., Ineson, S., Johns, T. C., Keen, A. B., Lee, R. W.,  Megann, A., Milton, S. F., Rae, J. G. L., Roberts, M. J., Scaife, A. A., Shiemann, R., Storkey, D., Thorpe, L., Watterson, I. G., Walters, D.N., West,  A., Wood, R. A., Woolings, T., Xaivier, P. K. (2017) The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations. Journal of Advances in Modeling Earth Systems,  https://doi.org/10.1002/2017MS001115

Initialisation references:



  • No labels