Contributors:  M. Reuter (Institute of Environmental Physics (IUP)), B. Fuentes Andrade (Institute of Environmental Physics (IUP)), M. Buchwitz (Institute of Environmental Physics (IUP))

Issued by: Institute of Environmental Physics (IUP), University of Bremen / Maximilian Reuter

Date: 19/11/2024

Ref: C3S2_313a_DLR_WP1-DDP-GHG-v1_PUGS_XGHG_v4.6

Official reference number service contract: 2024/C3S2_313a_DLR/SC1

Table of Contents

History of modifications

Version

Issue

Date

Description of modification

Chapters / Sections

4.6

1

19-November-2024

New document

All

4.6

2

5-May-2025

Updated following revision of independent reviewers

All

4.6

3

23-May-2025

Further minor corrections following revision by independent reviewers

All

List of datasets covered by this document

Deliverable ID

Product title

Product type (CDR, ICDR)

Version number

Delivery date

WP1-DDP-GHG-v1

XCO2_OBS4MIPS, XCH4_OBS4MIPS

CDR

4.6

31-Oct-2024

Acronyms

Acronym

Definition

ATBD

Algorithm Theoretical Basis Document

BESD

Bremen optimal EStimation DOAS

CAR

Climate Assessment Report

C3S

Copernicus Climate Change Service

CCI

Climate Change Initiative

CDR

Climate Data Record

CDS

(Copernicus) Climate Data Store

CMUG

Climate Modelling User Group (of ESA's CCI)

CRG

Climate Research Group

DOAS

Differential Optical Absorption Spectroscopy

ECMWF

European Centre for Medium Range Weather Forecasting

ECV

Essential Climate Variable

EMMA

Ensemble Median Algorithm

ENVISAT

Environmental Satellite (of ESA)

ESA

European Space Agency

ESTOC

European State of the Climate

EU

European Union

EUMETSAT

European Organisation for the Exploitation of Meteorological Satellites

FCDR

Fundamental Climate Data Record

FoM

Figure of Merit

FP

Full Physics retrieval method

FTIR

Fourier Transform InfraRed

FTS

Fourier Transform Spectrometer

GCOS

Global Climate Observing System

GHG

GreenHouse Gas

GOSAT

Greenhouse Gases Observing Satellite

GOSAT-2

Greenhouse Gases Observing Satellite 2

IPCC

International Panel in Climate Change

IUP

Institute of Environmental Physics (IUP) of the University of Bremen, Germany

JAXA

Japan Aerospace Exploration Agency

L1

Level 1

L2

Level 2

L3

Level 3

L4

Level 4

NASA

National Aeronautics and Space Administration

NetCDF

Network Common Data Format

NIES

National Institute for Environmental Studies

NIR

Near Infra Red

OBS4MIPS

Observations for Climate Model Intercomparisons

OCFP

OCO-2 Full Physics (FP) algorithm (used by Univ. Leicester)

OCO

Orbiting Carbon Observatory

OCPR

OCO-2 Proxy (PR) algorithm (used by Univ. Leicester)

ODR

Orthogonal Distance Regression

ppb

Parts per billion

ppm

Parts per million

PQAR

Product Quality Assessment Report

PR

(light path) PRoxy retrieval method

PUGS

Product User Guide and Specification

PVIR

Product Validation and Intercomparison Report

RDW

Relative Data Weight

RemoTeC

Retrieval algorithm developed by SRON

SCIAMACHY

SCanning Imaging Absorption spectroMeter for Atmospheric ChartographY

SEOM

Standard Error Of the Mean

SLIM

Simple cLImatological Model for atmospheric CO2 and CH4

SRON

SRON Netherlands Institute for Space Research

SRFP

SRON's Full Physics (FP) algorithm (also referred to a RemoTeC FP)

SRPR

SRON's Proxy (PR) algorithm (also referred to a RemoTeC PR)

SWIR

Short Wava Infra Red

TANSO

Thermal And Near infrared Sensor for carbon Observation

TANSO-FTS

Fourier Transform Spectrometer on GOSAT

TANSO-FTS-2

Fourier Transform Spectrometer on GOSAT-2

TCCON

Total Carbon Column Observing Network

TIR

Thermal Infra Red

TR

Target Requirement

TRD

Target Requirements Document

WFM-DOAS (or WFMD)

Weighting Function Modified DOAS

UoL

University of Leicester, United Kingdom

URD

User Requirements Document

WMO

World Meteorological Organization

XGHG

Column-averaged GHG products (here: XCO2 and XCH4)

General definitions

Essential climate variable (ECV): An ECV is a physical, chemical, or biological variable or a group of linked variables that critically contributes to the characterization of Earth's climate (Bojinski et al., 2014).

Climate data record (CDR): The US National Research Council (NRC) defines a CDR as a time series of measurements of sufficient length, consistency, and continuity to determine climate variability and change (National Research Council, 2004).

Fundamental climate data record (FCDR): A fundamental climate data record (FCDR) is a CDR of calibrated and quality-controlled data designed to allow the generation of homogeneous products that are accurate and stable enough for climate monitoring.

Thematic climate data record (TCDR): A thematic climate data record (TCDR) is a long time series of an essential climate variable (ECV) (Werscheck, 2015).

Intermediate climate data record (ICDR): An intermediate climate data record (ICDR) is a TCDR which undergoes regular and consistent updates (Werscheck, 2015), for example because it is being generated by a satellite sensor in operation.

Satellite data processing levels: The NASA Earth Observing System (EOS) distinguishes six processing levels of satellite data, ranging from Level 0 (L0) to Level 4 (L4) as follows (Parkinson et al., 2006).

L0

Unprocessed instrument data

L1A

Unprocessed instrument data alongside ancillary information

L1B

Data processed to sensor units (geo-located calibrated spectral radiance and solar irradiance)

L2

Derived geophysical variables (e.g., XCO2) over one orbit

L3

Geophysical variables averaged in time and mapped on a global longitude/latitude horizontal grid

L4

Model output derived by assimilation of observations, or variables derived from multiple measurements (or both)

Absolute systematic error or systematic error: Component of measurement error that in replicate measurements remains constant or varies in a predictable manner. Note that "systematic error" refers to the absolute systematic error (in contrast to "relative systematic error" defined below). For satellite GHG ECV products especially the relative systematic error is important.

Relative systematic error, relative accuracy or relative bias: Identical with "Systematic error" but after bias correction and without considering a possible global offset (overall mean bias). Reflects the importance of spatially and temporally correlated errors (spatio-temporal biases). Computed from standard deviations of spatial and temporal biases. 

Bias: Estimate of a systematic measurement error.

Precision: Measure of reproducibility or repeatability of the measurement without reference to an international standard so that precision is a measure of the random and not the systematic error. Suitable averaging of the random error can improve the precision of the measurement but does not establish the systematic error of the observation (CMUG-RBD, 2012).
Note: Precision is quantified with the standard deviation (1-sigma) of the error distribution.

Stability: Term often invoked with respect to long-term records when no absolute standard is available to quantitatively establish the systematic error - the bias defining the time-dependent (or instrument-dependent) difference between the observed quantity and the true value (CMUG-RBD, 2012).
Note: Stability requirements cover inter-annual error changes. If the change in the average bias from one year to another is larger than the defined values, the corresponding product does not meet the stability requirement.

Representativity: Extent to which an average of a set of measured values corresponds to the true average, e.g., over a grid cell. It is important when comparing with or assimilating in models. Measurements are typically averaged over different horizontal and vertical scales compared to model fields. If the measurements are smaller scale than the model it is important. The sampling strategy can also affect this term (CMUG-RBD, 2012).

Threshold requirement: The threshold is the limit at which the observation becomes ineffectual and is not of use for climate-related applications (CMUG-RBD, 2012).

Goal requirement: The goal is an ideal requirement above which further improvements are not necessary (CMUG-RBD, 2012).

Breakthrough requirement: The breakthrough is an intermediate level between the "threshold" and "goal" requirements, which - if achieved - would result in a significant improvement for the targeted application. The breakthrough level may be considered as an optimum, from a cost-benefit point of view when planning or designing observing systems (CMUG-RBD, 2012).

Horizontal resolution: Area over which one value of the variable is representative of (CMUG-RBD, 2012). 

Vertical resolution: Height over which one value of the variable is representative of. Only used for profile data (CMUG-RBD, 2012). 

Observing Cycle (or Revisit Time): Temporal frequency at which the measurements are required (CMUG-RBD, 2012).

XCO2 (column-averaged dry-air mole fraction of atmospheric carbon dioxide): amount of CO2, expressed in moles, in the vertical column divided by the amount of dry air, also expressed in moles, in that vertical column.

XCH4 (column-averaged dry-air mole fraction of atmospheric methane): amount of CH4, expressed in moles, in the vertical column divided by the amount of dry air, also expressed in moles, in that vertical column.

Column averaging kernel: The column averaging kernel vertical profile represents the sensitivity of the retrieved XCO2 or XCH4 to the true mole fraction depending on altitude. Values near one are ideal and indicate that the influence of the a priori is minimal.

A priori profile: The CO2 or CH4 a priori profile represents the knowledge of the vertical profile of the dry-air mole fraction of CO2 or CH4 before the measurement. See  Rodgers, 2000 for a more detailed explanation.

Observations for Model Intercomparison Project (Obs4MIPs, here also OBS4MIPS): is an effort to make observational data more accessible for climate model evaluation, development and research. An Obs4MIPs (or OBS4MIPS) dataset is a dataset technically aligned with climate model data, and following data specifications consistent with the CMIP (Coupled Model Intercomparison Project) standard output. See https://pcmdi.github.io/obs4MIPs/ for more detailed information.

Glint observation mode: Viewing geometry used by some satellite instruments where the detector points toward the direction of the specularly reflected sunlight, i.e. the viewing zenith angle and solar zenith angle are approximately equal. This mode is used for measuring CO2 and CH4 over water surfaces (such as the ocean), which have low reflectivity in the spectral region used for the retrieval of these gases. By observing in glint mode, the instrument measures a higher reflected radiance compared to other viewing geometries, enhancing the signal for the gas retrievals.

Inter-algorithm spread (IAS): Algorithm-to-algorithm standard deviation of the grid box averages (for a set of L3 algorithms). It informs about potential regional or temporal systematic uncertainties.

Mean Local Time (MLT): Expression of time given by the hour angle of the mean position of the Sun, plus an offset of 12 hours. 

Executive summary

This document is a Product User Guide and Specification (PUGS) generated in the framework of the Copernicus Climate Change Service (C3S, https://climate.copernicus.eu/). For C3S a large number of satellite-derived Essential Climate Variable (ECV) data products are generated and made available via the Copernicus Climate Data Store (CDS, https://cds.climate.copernicus.eu/). 

This document is the user guide for two satellite-derived atmospheric carbon dioxide (CO2) and methane (CH4) C3S data products, XCO2_OBS4MIPS and XCH4_OBS4MIPS, respectively. CO2 and CH4 are important greenhouse gases (GHG). The two products are column-averaged dry-air mole fractions of CO2 and CH4, denoted as XCO2 (in parts per million, ppm) and XCH4 (in parts per billion, ppb), respectively. These two "XGHG" products are generated in C3S project C3S2_313a_DLR led by DLR, Germany (a follow-on activity of project C3S2_312a_Lot2, also led by DLR). In the following this project is referred to as the C3S/GHG project. Within this project also mid-tropospheric CO2 and CH4 products are generated. These mid-tropospheric CO2 and CH4 products are not described in this document but in dedicated separate documents (ATBD MTGHG, 2024, PQAR MTGHG, 2024 and PUGS MTGHG, 2024).

The XCO2_OBS4MIPS and XCH4_OBS4MIPS products are merged multi-sensor XCO2 and XCH4 Level 3 (L3) products with monthly time and 5ox5o spatial resolution, generated using an ensemble of individual satellite sensor Level 2 (L2) products. The algorithm that produced these products has been developed at the University of Bremen, Germany, and has also been used in the past to generated previous versions of these products (e.g. ATBD XGHG main, 2023, PQAR XGHG main, 2023, PUGS XGHG main, 2023).

The two XGHG data products are generated - or have been generated in the past - from XCO2 and XCH4 products from the satellite instruments SCIAMACHY onboard ENVISAT (Burrows et al., 1995; Bovensmann et al., 1999), TANSO-FTS/GOSAT (Kuze et al., 2009, 2016), TANSO-FTS-2/GOSAT-2 (Suto et al., 2021). For product XCO2_OBS4MIPS also L2 products from NASA's OCO-2 mission (Crisp et al., 2004; Boesch et al., 2011) have been used as input products.

Both the input data and the algorithm used to generate the product are described in detail in ATBD XGHG, 2024.

1. Product Description(s)

In this section an overview of the version 4.6 XCO2_OBS4MIPS and XCH4_OBS4MIPS data products- specified in terms of variable, its property, processing levels and instruments - is given. 

Carbon dioxide and methane are so-called Essential Climate Variables (ECVs) and the need to monitor them has been clearly identified, including the definition of key requirements (TRD GAD GHG, 2024; ESA-CCI-GHG-URD, 2024; CMUG-RBD, 2012; GCOS-245; GCOS-200; GCOS-195; GCOS-154). In recent years several satellite-derived ECV data products, including CO2 and CH4 (e.g., Buchwitz et al., 2013a, 2016, 2017; Reuter et al., 2013, 2020; Schneising et al., 2023), have been generated in particular in the framework of the Climate Change Initiative (CCI) of ESA (European Space Agency) (e.g., Hollmann et al., 2013) and operationally via C3S.

Previous versions of these satellite-derived CO2 and CH4 data products have been used for several (primarily scientific) applications, e.g.,

  • to improve our knowledge on the various natural and anthropogenic (surface) sources and sinks of these important greenhouse gases (GHG) (see, e.g., Alexe et al., 2015; Bergamaschi et al., 2015; Chevallier et al., 2014, 2016; Cressot et al., 2014; Detmers et al., 2015; Guerlet et al., 2013; Houweling et al., 2015; McNorton et al., 2016; Pandey et al., 2016; Reuter et al., 2014b, 2017; Schneising et al., 2014b, 2020; Turner et al., 2015, 2016, and references given therein),
  • to monitor the global or regional distribution of CO2 and CH4 (e.g., Buchwitz et al., 2007, 2016b; Schneising et al., 2011; Frankenberg et al., 2011; Massart et al., 2016; Reuter et al., 2020; Hachmeister et al., 2022, 2024),
  • to improve our knowledge on emission ratios, e.g., for biomass burning (e.g., Ross et al., 2013; Parker et al., 2016), and
  • for comparisons with (chemistry) climate models (e.g., Shindell et al., 2013; Hayman et al., 2014; Lauer et al., 2017; Gier et al., 2020) and other models (e.g., Schneising et al., 2014a; Parker et al., 2016).

The data products presented here have been derived from satellite radiances in the Near Infrared / Short Wave Infrared (NIR/SWIR) spectral region using data from the following sensors: SCIAMACHY/ENVISAT, TANSO-FTS/GOSAT, TANSO-FTS-2/GOSAT-2 and OCO-2. Satellite radiance observations in the NIR/SWIR spectral region in downward-looking observation modes are sensitive to atmospheric CO2 and CH4 concentration changes with good sensitivity down to the Earth's surface (because solar radiation reflected at the Earth's surface is observed). These measurements permit to retrieve "total column information" but do not permit to retrieve (detailed) information on the vertical profiles of CO2 and CH4.

Figure 1 provides an overview of the satellites sensors used to generate the XCO2 and XCH4 products. All sensors permit the retrieval of XCO2 and XCH4 with the exception of OCO-2, which only permits the retrieval of XCO2.

Figure 1: Satellite sensor time coverage. All sensors permit the retrieval of XCO2 and XCH4 with the exception of OCO-2 (XCO2 only).


The input Level 2 (L2) data products are satellite-derived column-averaged dry-air mole fractions of CO2 and CH4, denoted XCO2 (in parts per million, ppm) and XCH4 (in parts per billion, ppb).

The Level 3 (L3) data products generated from the merged individual L2 data products are in OBS4MIPS format and described in detail in Section 1.1 for XCO2 and in Section 1.2 for XCH4. OBS4MIPS (Observations for Model Intercomparisons Project https://pcmdi.github.io/obs4MIPs/ with last access: 2-Apr-2025) is an activity to make observational products more accessible especially for climate model intercomparisons.

The XCO2 and XCH4 OBS4MIPS products are gridded data products in NetCDF format with a spatial resolution of 5ox5o (i.e., using an equirectangular (Cartesian) latitude/longitude grid) and a monthly time resolution. These products have been generated using as input the L2 EMMA (Ensemble Median Algorithm) v4.6 products (see ATBD XGHG, 2024). 

The EMMA algorithm takes the input L2 data products and merges them into a new L2 product. It is this new EMMA L2 dataset that is then gridded to produce the OBS4MIPS products.

The EMMA algorithm and its input data are described in detail in ATBD XGHG, 2024In broad terms, the merging algorithm grids all L2 products to a monthly 10º x 10º grid and selects, for each grid cell, the L2 product that corresponds to the median of the gridded input products. The output of EMMA is a merged L2 intermediate product that contains the soundings of the individual L2 input products that were selected from the merging algorithm, i.e. for each grid cell, one algorithm is selected, and the L2 soundings corresponding to this algorithm become part of the merged L2 product.

The individual input L2 data products are bias corrected. Bias correction is usually an integral part of the L2 products and described in the corresponding literature. When merging the L2 products with EMMA, they are harmonized by adjusting them to a common a priori and by applying a global offset correction. However, no additional bias correction has been applied to the two OBS4MIPS products.

For the EMMA algorithm, also SLIM (Simple cLImatological Model for atmospheric CO2 and CH4 (Noël et al., 2022). and TCCON (Total Carbon Column Observing Network, Wunch et al., 2011) GGG2020 (Laughner et al., 2024) data are used. The SLIM data is used both as a new common a priori as well as to make a global offset correction. The TCCON data are essentially used to calibrate the reported uncertainties of the input L2 products and for the validation.

Table 1 lists the XCO2 and XCH4 data products presented in this document. These two products are merged multi-sensor XCO2 and XCH4 L3 products with monthly time and 5ox5o spatial resolution generated using an ensemble of individual satellite sensor L2 products. The algorithm has been developed at the University of Bremen, Germany, and has also been used in the past to generated previous versions of these products (e.g., Reuter et al., 2013, 2020).


Table 1: Overview XCO2 and XCH4 OBS4MIPS data products. The sensors used for the input L2 products are listed in the second column. The third column shows the product version numbers, dates and periods covered by the products, and the dates in which each of the products has become available in the Copernicus Climate Data Store.

Product ID

Sensor(s)

Product version: Availability: Temporal coverage

Comments

XCO2_OBS4MIPS

Merged SCIAMACHY, GOSAT, GOSAT-2, OCO-2

v4.6: Dec. 2024: 01/2003-12/2023

Merged L3 XCO2 product in OBS4MIPS format.

Temporal resolution: monthly

Spatial resolution: 5ox5o

XCH4_OBS4MIPS

Merged SCIAMACHY, GOSAT, GOSAT-2

v4.6: Dec. 2024: 01/2003-12/2023

Merged L3 XCH4 product in OBS4MIPS format.

Temporal resolution: monthly

Spatial resolution: 5ox5o


We recommend users of these L3 products to read the relevant peer-reviewed publications, i.e., Reuter et al., 2020, describing how (a previous version of) this data product has been generated and how it can be used to address scientific applications.

The L2 data used as input to generate the XCO2_OBS4MIPS and XCH4_OBS4MIPS products is described in Section 2.2 of ATBD XGHG, 2024. Two additional datasets are used: in order to account for different column averaging kernels, all L2 retrieval results are adjusted to a common a priori, namely the SLIM. Scaling of the reported L2 uncertainties and validation are done with TCCON as reference data set. See ATBD XGHG, 2024 for a more detailed explanation.

1.1. OBS4MIPS XCO2 description

The main quantity / data field of this product is the column-average dry-air mole fraction of atmospheric carbon dioxide (CO2), denoted as XCO2. XCO2 in these products is a dimensionless quantity (unit: mol/mol) defined as the vertical column of CO2 divided by the vertical column of dry air (= all air molecules except water vapor) (see, e.g., Buchwitz et al., 2005, for details).

The input data to generate the OBS4MIPS XCO2 product is illustrated in Figure 6 in ATBD XGHG, 2024. For more detailed information on the input data and the processing algorithm see the ATBD XGHG, 2024 document.

In this section, version v4.6 of the XCO2_OBS4MIPS product is described. Table 2 shows a summary of the history of changes in previously generated XCO2_OBS4MIPS datasets.


Table 2: History of changes in previously generated XCO2_OBS4MIPS datasets. The first column contains the Climate Data Record (CDR) number, the second column, the product version and date of its delivery. The third column list the used input data to generate the given datasets. The fourth column summarizes the changes with respect to the previous version.

CDR number

Product version (delivery date)

Input data

Remarks

CDR8

v4.6. (09.08.2024)

L2 input data: SCIAMACHY BESD v02.01.02, GOSAT NIES v03.05BC, GOSAT RemoteC v2.3.8, GOSAT UOL-FP v7.3, GOSAT ACOS v9r, GOSAT FOCAL v3.0, OCO-2 NASA v11.1, OCO-2 FOCAL v11, GOSAT2 NIES v02.00, GOSAT-2 RemoteC v2.1.0, GOSAT-2 FOCAL v3.0

Common a priori: SLIM2024

Validation data: TCCON GGG2020

New retrieval versions, new common a priori, extended time period.

CDR7

v4.5. (05.08.2023)

L2 input data: SCIAMACHY BESD v02.01.02, GOSAT NIES v02.9xBC, GOSAT RemoteC v2.3.8, GOSAT UOL-FP v7.3, GOSAT ACOS v9r, GOSAT FOCAL v3.0, OCO-2 NASA v11.1, OCO-2 FOCAL v10.1, GOSAT2 NIES v02.00, GOSAT-2 RemoteC v2.0.0, GOSAT-2 FOCAL v3.0

Common a priori: SLIM2023

Validation data: TCCON GGG2020

New retrieval versions, new common a priori, extended time period, new validation data.

CDR6

v4.4. (10.07.2022)

L2 input data: SCIAMACHY BESD v02.01.02, GOSAT NIES v02.9xBC, GOSAT RemoteC v2.3.8, GOSAT UOL-FP v7.3, GOSAT ACOS v9r, GOSAT FOCAL v3.0, OCO-2 NASA v10.2, OCO-2 FOCAL v10, GOSAT-2 RemoteC v2.0.0, GOSAT-2 FOCAL v3.0

Common a priori: SLIM2022

Validation data: TCCON GGG2014

New retrieval versions, new common a priori, extended time period, added GOSAT-2 data, bug fixes, code optimizations.

CDR5

v4.3. (05.02.2021)

L2 input data: SCIAMACHY BESD v02.01.02, GOSAT ACOS v9r, GOSAT FOCAL v1.0, GOSAT RemoteC v2.3.8, GOSAT UOL-FP v7.3, GOSAT NIES v02.9xBC, GOSAT PPDF-S v02, OCO-2 NASA v10.2, OCO-2 FOCAL v09

Common a priori: SC2C2020

Validation data: TCCON GGG2014

New retrieval versions, new common a priori, extended time period, bug fixes in the computations of the averaging kernels (with minimal impact), rejection of non-unique RemoTeC soundings.

CDR4

v4.2. (28.07.2020)

L2 input data: SCIAMACHY BESD v02.01.02, GOSAT ACOS v9r, GOSAT FOCAL v1.0, GOSAT RemoteC v2.3.8, GOSAT UOL-FP v7.3, GOSAT NIES v02.75BC, GOSAT PPDF-S v02, OCO-2 NASA v10.2, OCO-2 FOCAL v09

Common a priori: SC2C2020

Validation data: TCCON GGG2014

New retrieval versions, new common a priori, extended time period.

CDR3

v4.1. (02.07.2019)

L2 input data: SCIAMACHY BESD v02.01.02, GOSAT ACOS v7.3.10a, GOSAT NIES v02.75BC, GOSAT PPDF-S v02, GOSAT RemoteC v2.3.8, GOSAT UOL-FP v7.2, OCO-2 FOCAL v08, OCO-2 NASA v9.0.03

Common a priori: SECM2018

Validation data: TCCON GGG2014 

New retrieval versions, extended time period.

CDR2

v3.1. (03.09.2018)

L2 input data: SCIAMACHY BESD v02.01.02, GOSAT ACOS v7.3.10a, GOSAT NIES v02.72, GOSAT NIES v02BC, GOSAT PPDF-S v02, GOSAT RemoteC v2.3.8, GOSAT UOL-FP v7.2

Common a priori: SECM2018

Validation data: TCCON GGG2014

New retrieval versions, new common a priori, extended time period, re-structured code.

CDR1

v3.0. (18.08.2017)

L2 input data: SCIAMACHY BESD v02.01.02, GOSAT ACOS v7.3.10a, GOSAT NIES v02, GOSAT RemoteC v2.3.8, GOSAT UOL-FP v7.1

Common a priori: SECM2016

Validation data: TCCON GGG2014

First EMMA CO2 version operationally processed in the frame of C3S.

1.2. OBS4MIPS XCH4 description

The main quantity / data field of this product is the column-average dry-air mole fraction of atmospheric methane (CH4). XCH4 is a dimensionless quantity (unit: mol/mol) defined as the vertical column of CH4 divided by the vertical column of dry air (= all air molecules except water vapor) (see, e.g., Buchwitz et al., 2005, for details).

The input data to generate the OBS4MIPS XCO4 product is illustrated in Figure 7 in ATBD XGHG, 2024. For more detailed information on the input data and the processing algorithm see the ATBD XGHG, 2024 document.

In this section, version v4.6 of the XCH4_OBS4MIPS product is described. Table 3 shows a summary of the history of changes in previously generated XCH4_OBS4MIPS datasets.

Table 3: History of changes in previously generated XCH4_OBS4MIPS datasets. The first column contains the Climate Data Record (CDR) number, the second column, the product version and date of its delivery. The third column list the used input data to generate the given datasets. The fourth column summarizes the changes with respect to the previous version.

CDR number

Product version (delivery date)

Input data

Remarks

CDR8

v4.6. (09.08.2024)

L2 input data: SCIAMACHY WFMD v4.0, GOSAT FOCAL-FP v3.0, GOSAT FOCAL-PR v3.0, GOSAT NIES v03.05BC, GOSAT RemoteC-FP v2.3.8, GOSAT RemoteC-PR v2.3.9, GOSAT UOL-FP v7.3, GOSAT UOL-PR v9.0, GOSAT2 FOCAL-FP v3.0, GOSAT2 FOCAL-PR v3.0, GOSAT RemoteC-FP v2.1.0, GOSAT RemoteC-PR v2.1.0, GOSAT2 NIES v02.00 

Common a priori: SLIM2024 

Validation data: TCCON GGG2020

New retrieval versions, new common a priori, extended time period.

CDR7

v4.5. (05.08.2023)

L2 input data: SCIAMACHY WFMD v4.0, GOSAT FOCAL-FP v3.0, GOSAT FOCAL-PR v3.0, GOSAT NIES v02.9xBC, GOSAT RemoteC-FP v2.3.8, GOSAT RemoteC-PR v2.3.9, GOSAT UOL-FP v7.3, GOSAT UOL-PR v9.0, GOSAT-2 FOCAL-FP v3.0, GOSAT-2 FOCAL-PR v3.0, GOSAT RemoteC-FP v2.0.0, GOSAT RemoteC-PR v2.0.1, GOSAT-2 NIES v02.00

Common a priori: SLIM2023

Validation data: TCCON GGG2020 

New retrieval versions, new common a priori, extended time period, new validation data.

CDR6

v4.4. (19.07.2022)

L2 input data: SCIAMACHY WFMD v4.0, GOSAT FOCAL-FP v3.0, GOSAT FOCAL-PR v3.0, GOSAT NIES v02.9xBC, GOSAT RemoteC-FP v2.3.8, GOSAT RemoteC-PR v2.3.9, GOSAT UOL-FP v7.3, GOSAT UOL-PR v9.0, GOSAT-2 FOCAL-FP v3.0, GOSAT-2 FOCAL-PR v3.0, GOSAT RemoteC-FP v2.0.0, GOSAT RemoteC-PR v2.0.0, GOSAT-2 NIES v01.07

Common a priori: SLIM2022

Validation data: TCCON GGG2014

New retrieval versions, new common a priori, extended time period, added GOSAT-2 data, bug fixes, code optimizations.

CDR5

v4.3. (05.02.2021)

L2 input data: SCIAMACHY WFMD v4.0, GOSAT RemoteC-FP v2.3.8, GOSAT RemoteC-PR v2.3.9, GOSAT UOL-FP v7.3, GOSAT UOL-PR v9.0, GOSAT NIES v02.9xBC, GOSAT PPDF-S v02

Common a priori: SC2C2020

Validation data: TCCON GGG2014

New retrieval versions, new common a priori, extended time period, bug fixes in AK computations (with tiny impact), rejection of non-unique RemoTeC soundings.

CDR4

v4.2. (30.07.2020)

L2 input data: SCIAMACHY WFMD v4.0, GOSAT RemoteC-FP v2.3.8, GOSAT RemoteC-PR v2.3.9, GOSAT UOL-FP v7.3, GOSAT UOL-PR v9.0, GOSAT NIES v02.75BC, GOSAT PPDF-S v02

Common a priori: SC2C2020

Validation data: TCCON GGG2014

New retrieval versions, new common a priori, extended time period.

CDR3

v4.1. (03.07.2019)

L2 input data: SCIAMACHY WFMD v4.0, GOSAT RemoteC-FP v2.3.8, GOSAT RemoteC-PR v2.3.9, GOSAT UOL-FP v7.2, GOSAT UOL-PR v7.2, GOSAT NIES v02.75BC, GOSAT PPDF-S v02

Common a priori: SECM2018

Validation data: TCCON GGG2014 

New retrieval versions, extended time period.

CDR2

v3.1. (12.09.2018)

L2 input data: SCIAMACHY WFMD v4.0, GOSAT RemoteC-FP v2.3.8, GOSAT RemoteC-PR v2.3.8, GOSAT UOL-FP v7.2, GOSAT UOL-PR v7.2, GOSAT NIES v02BC, GOSAT PPDF-S v02, GOSAT NIES v02.72

Common a priori: SECM2018

Validation data: TCCON GGG2014

New retrieval versions, new common a priori, extendet time period, re-structured code.

CDR1

v3.0. (18.08.2017)

L2 input data: SCIAMACHY WFMD v4.0, GOSAT RemoteC-FP v2.3.8, GOSAT RemoteC-PR v2.3.8, GOSAT UOL-FP v7.1, GOSAT UOL-PR v7.0, GOSAT NIES v02

Common a priori: SECM2016

Validation data: TCCON GGG2014

First EMMA CH4 version operationally processed in the frame of C3S.

1.3. Overview of Product Target Requirements

Target requirements are described in the Target Requirements and Gap Analysis document (TR-GAD GHG, 2024).

Table 4 compares the required and the achieved performance for random error (precision), required accuracy (in terms of spatio-temporal biases) and stability (in terms of linear bias drift). The data quality level is also summarized below (see Section 1.3 of PQAR XGHG, 2024 for a more detailed explanation on the reported probabilities).

Table 4: Compliance with User Requirements. XCO2 and XCH4 random (“precision”), systematic error and stability requirements (from TR-GAD GHG, 2024). Abbreviations: G=Goal, B=Breakthrough, T=Threshold requirement. §) Required systematic error after an empirical bias correction that does not use the verification data. #) Required systematic error and stability after bias correction, where bias correction is not limited to the application of a constant offset / scaling factor.

Parameter

Requirement type

Requirement

Reported value

Probability that TR is met

G

B

T

CO2

Random error (precision) (10002 kmmonthly) (ppm)

< 0.3

< 1.0

< 1.3

0.91 (<= 1.0, within Breakthrough)

-

Accuracy: Relative systematic error (ppm)

< 0.2 (absolute)

< 0.3 (relative§))

< 0.5 (relative#))

0.4 (<= 0.5, within Threshold)

77%

Stability: Linear bias trend (ppm/year)

< 0.2 (absolute)

< 0.3 (relative§))

< 0.5 (relative#))

0.02 (<= 0.2, within Goal)

97%

CH4

Random error (precision) (10002 kmmonthly) (ppb)

< 3

< 5

< 11

6.1 (<= 11, within Threshold) -

Accuracy: Relative systematic error (ppb)

< 1 (absolute)

< 5 (relative§))

< 10 (relative#))

 6.25 (<= 10, within Threshold)

84%

Stability: Linear bias trend (ppb/year)

< 1 (absolute)

< 2 (relative§))

< 3 (relative#))

 0.32 (<=1, within Goal)

 97%

 


The validation of Level 3 product XCO2_OBS4MIPS can be summarized as follows:

  • The overall monthly mean uncertainty is 0.91 ppm and the mean bias is 0.34 ppm. Relative systematic error, i.e., the spatio-temporal bias, is 0.4 ppm (1-sigma). The computed linear drift of 0.02±0.12 ppm/year (1-sigma) is small and not significant.
  • The probability that the 0.5 ppm accuracy requirement is met is 77%.
  • The probability that the 0.5 ppm/year stability requirement is met is 97%.
  • Overall, this product has therefore reasonable accuracy and high stability.

The validation of Level 3 product XCH4_OBS4MIPS can be summarized as follows:

  • The overall monthly mean uncertainty is 6.1 ppb and the mean bias is -0.63 ppb. Relative systematic error, i.e., the spatio-temporal bias, is 6.25 ppb (1-sigma). The computed linear drift of 0.32±0.87 ppb/year (1-sigma) is small and not significant.
  • The probability that the 10 ppb accuracy requirement is met is 84%.
  • The probability that the 3 ppb/year stability requirement is met is 97%. 
  • Overall, this product has therefore very good accuracy and high stability.

1.4. Example visualization of key variables

Figure 2 shows an example of XCO2 (top) and XCH4 (bottom) for August 2015 as well as the corresponding total uncertainty.

Figure 2:  Top: XCO2_OBS4MIPS for August 2015 (left) and its uncertainty (right) computed from the retrieval noise and EMMA’s inter-algorithm spread. Gray areas indicate the absence of data (light gray = ocean, dark gray = land). Bottom: Same for XCH4_OBS4MIPS.

Another example of XCO2 (top) and XCH4 (bottom) for April 2015 as well as the corresponding total uncertainty is shown in Figure 3.

Figure 3: Top: XCO2_OBS4MIPS for April 2015 (left) and its uncertainty (right) computed from the retrieval noise and EMMA’s inter-algorithm spread. Gray areas indicate the absence of data (light gray = ocean, dark gray = land). Bottom: Same for XCH4_OBS4MIPS.


A XCO2 value of, for example, 400 ppm at a given location means that 400 CO2 molecules are present in the atmosphere above that location per one million air molecules excluding water molecules. XCO2 can be retrieved from instruments such as SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT using Optimal Estimation (Rodgers, 2000) or DOAS (Buchwitz et al., 2000) retrieval algorithms as shown in various publications (e.g., Buchwitz et al., 2005; Butz et al., 2011; Cogan et al., 2012; Noël et al., 2021, 2022; Reuter et al., 2011; 2013; Schneising et al., 2011; Yoshida et al., 2013). These products have been validated using ground-based Total Carbon Column Observing Network (TCCON) (Wunch et al., 2010, 2011, 2015, Laughner et al., 2024) XCO2 observations (e.g., Dils et al., 2014).

A XCH4 value of, for example, 1800 ppb at a given location means that 1800 CH4 molecules are present in the atmosphere above that location per one billion air molecules excluding water molecules. XCH4 can be retrieved from instruments such as SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT using Optimal Estimation (Rodgers, 2000) or DOAS (Buchwitz et al., 2000) retrieval algorithms as shown in various publications (e.g., Buchwitz et al., 2005; Butz et al., 2011; Frankenberg et al., 2011; Schneising et al., 2011, 2023; Noël et al., 2022; Parker et al., 2011; Schepers et al., 2012; Yoshida et al., 2013). These products have been validated using ground-based TCCON (Wunch et al., 2010, 2011, 2015, Laughner et al., 2024) XCH4 observations (e.g., Dils et al., 2014).

Figure 4 shows as XCO2 time series for the northern (red) and southern (blue) hemisphere averages. The curves in the figure show some known features of atmospheric CO2, such as a continuous increase in its yearly concentration, which results mainly from anthropogenic emissions due to the combustion of fossil fuels. Another feature that we can appreciate in the figure is the seasonality of atmospheric CO2, with peaks in its concentration at the beginning of the vegetation growing season and a decrease in its concentration as the CO2 uptake by plants starts to increase. The atmospheric CO2 concentration increases again when the photosynthetic activity starts to decrease at the end of the summer. The oscillations in the CO2 concentration are more pronounced in the northern hemisphere because of the higher amount of vegetation in this hemisphere compared to the southern hemisphere.

Figure 5 shows a similar plot for XCH4. The curves shown in Figure 5 show as well a continuous increase of atmospheric CH4. Its seasonal cycle is the result of the seasonality of its sources (like wetlands, rice paddies or biomass burning) and sinks (reaction with the hydroxyl radical), which are driven by meteorological conditions (e.g. Dowd et al., 2023).  A large uncertainty can be observed in the methane product for the time period until 2009, in which there is only data from SCIAMACHY. The reason for the large uncertainty in this period is a technical problem in important methane-sensitive detector pixels of the SCIAMACHY instrument.

The higher values of XCH4 in the northern hemisphere compared to the southern hemisphere is clearly visible for XCH4 (Figure 5), and less pronounced for XCO2 (Figure 4). This results from higher emissions of both CO2 and CH4 in the northern hemisphere.



Figure 4: C3S XCO2 time series (product XCO2_OBS4MIPS version 4.6) for the northern (red) and southern (blue) hemispheres. The shaded areas show the corresponding uncertainty consisting of (calibrated) measurement noise and inter-algorithm-spread.


 



Figure 5: C3S XCH4 time series (product XCH4_OBS4MIPS version 4.6) for the northern (red) and southern (blue) hemispheres. The shaded areas show the corresponding uncertainty consisting of (calibrated) measurement noise and inter-algorithm-spread.

1.5. Data usage information

The main quantity / data field is the column-average dry-air mole fraction of atmospheric of carbon dioxide (CO2), denoted as XCO2, for the XCO2_OBS4MIPS product. The column-average dry-air mole fraction of atmospheric of methane (CH4), denoted as XCH4, is the main quantity / data field of the XCH4_OBS4MIPS product. We collectively refer to XCO2 and XCH4 as XGHG.

In contrast to the most L2 products, in which the units used are ppm (10-6) or ppb (10-9), in these products, XCO2 and XCH4 are reported in units of mol/mol, defined as the vertical column of CO2 or CH4 divided by the vertical column of dry air (= all air molecules except water vapor) (see, e.g., Buchwitz et al., 2005, for details), reported as numerical fractional values in the range 0.0 – 1.0. For example, a XCO2 value of 0.000400 corresponds to 400 ppm (parts per million); a XCH4 value of 0.000001800 corresponds to 1800 ppb (parts per billion).

Also reported (in the same units) are the corresponding (1-sigma) uncertainties (variables xco2_stderr and xch4_stderr).

These variables are reported per month and per 5ox5o (latitude times longitude) grid cell. 

Also provided are variables related to spatial (variables lat, lat_bnds, lon, lon_bnds) and temporal information (time, time_bnds) as described in detail in Section1.5.3. Information on altitude sensitivity (variable column_averaging_kernel) and a priori profiles (variables vmr_profile_co2_apriori and vmr_profile_ch4_apriori) is also provided.

1.5.1. Data format and file naming 

Each of the products (XCO2_OBS4MIPS and XCH4_OBS4MIPS) is contained in a single file using this file name convention: xghg_c3s_l3_v46_YYYYMM_YYYYMM.nc.

Explanation:

  • xghg: Variable name (xco2 or xh4)
  • c3s: Copernicus Climate Change Service
  • l3: Level 3 product
  • v46: Version 4.6
  • YYYYMM_YYYYMM: First month and year and last month and year of data set.

For example, the product named xco2_c3s_l3_v46_200301_202312.nc refers to the L3 XCO2_OBS4MIPS product in its version 4.6, which covers the period from January 2003 to December 2023.

1.5.2. Quality flags and data masks 

The products contain no quality flags. Missing data is marked for each variable as described in Section 1.5.3.

Data masking is typically not required but users have the option to use, for example, only data over land using variable “land_fraction”.

1.5.3. File contents

Table 5 and Table 6 list the main characteristics of the XCO2_OBS4MIPS and XCH4_OBS4MIPS products, respectively. See ATBD XGHG, 2024, for an overview of how these products have been generated and for additional details.


Table 5: Main characteristics of the XCO2 OBS4MIPs v4.6 product.

CF variable name,
units

Long name: column-average dry-air mole fraction of atmospheric carbon dioxide or 
Standard name: dry_atmosphere_mole_fraction_of_carbon_dioxide
Units: dimensionless (mol/mol)

See also: CF Standard Name Table, Version 31, 08 March 2016 (http://cfconventions.org/Data/cf-standard-names/31/build/cf-standard-name-table.html)

Spatial resolution

5° equal angle

Temporal resolution

Monthly average, from January 2003 – December 2023

Coverage

Global (2003 – mid 2009: land only; afterwards land and ocean)

Table 6: Main characteristics of the XCH4 OBS4MIPs v4.6 product.

CF variable name,
units

Long name: column-average dry-air mole fraction of atmospheric methane
Standard name: dry_atmosphere_mole_fraction_of_methane
Units: dimensionless (mol/mol)

See also: CF Standard Name Table, Version 31, 08 March 2016 (http://cfconventions.org/Data/cf-standard-names/31/build/cf-standard-name-table.html)

Spatial resolution

5° equal angle

Temporal resolution

Monthly average, from January 2003 – December 2023

Coverage

Global (November 2005 – March 2009: land only; before and afterwards land and ocean)


Note that a resolution of 5ox5o has been selected (instead of, e.g., 1ox1o) to ensure better noise suppression (note that the underlying individual satellite retrievals are noisy and sparse due to very strict quality filtering) (see ATBD XGHG, 2024). 

Each of the OBS4MIPS L3 products includes the variables listed in Table 7. They are described in the following.

Table 7: OBS4MIPS variables. x, y, z, t, represent the number of grid points in longitude, latitude, pressure, and temporal dimension respectively.

Name

Type

Dimension

Units

Short Description

time

Float

t

Days since 1990-01-01

Time center

time_bnds

Float

t,2

Days since 1990-01-01

Time boundaries

lat

Float

y

Degrees north

Latitude center

lat_bnds

Float

y,2

Degrees north

Latitude boundaries

lon

Float

x

Degrees east

Longitude center

lon_bnds

Float

x,2

Degrees east

Longitude boundaries

pre

Float

z

Surface pressure

Pressure center

pre_bnds

Float

z,2

Surface pressure

Pressure boundaries

land_fraction

Float

x,y

1

Land area fraction

xghg

Float

x,y,t

1

Satellite retrieved column-average dry-air mole fraction of CO2 or CH4

xghg_nobs

Integer

x,y,t

1

Number of individual L2 observations

xghg_stdder

Float

x,y,t

1

Standard error

xghg_stddev

Float

x,y,t

1

Standard deviation

column_averaging_kernel

Float

x,y,z,t

1

Column-averaging kernel

vmr_profile_ghg_apriori

Float

x,y,z,t

1

A priori dry-air mole fraction profile

*The name <ghg> stands for co2 for the XCO2_OBS4MIPS product and for ch4 for the XCH4_OBS4MIPS product. E.g. the variable xghg in this table is named xco2 in the XCO2_OBS4MIPS product and xch4 in the XCH4_OBS4MIPS product. Analogously, xghg_nobs stands for xco2_nobs or vmr_profile_ghg_apriori for vmr_profile_co2_apriori in XCO2_OBS4MIPS, and xch4_nobs or vmr_profile_ch4_apriori in XCH4_OBS4MIPS.

Description of each parameter:

time: Time center in days since 1990-01-01. 

time_bnds: Time boundaries. Start and end time of each month in days since 1-Jan-1990 

lat: Latitude center in degrees north (from -90.0º to +90.0º). 

lat_bnds: Latitude boundaries (upper and lower boundaries of 5º latitude bands) in degrees north. 

lon: Longitude center in degrees east (from -180.0º to +180.0º).

lon_bnds: Longitude boundaries (upper and lower boundaries of 5º longitude bands) in degrees east.

pre: Pressure level center, dimensionless as normalized to surface pressure. 

pre_bnds: Pressure layer boundaries, dimensionless as normalized to surface pressure. 

land_fraction: Fraction of 5º x 5º cells covered by land (numerical values are between 0.0 and 1.0). It is computed from GTOPO30 data available from the U.S. Geological Survey.

xghg = {xco2 or xch4}: Main parameter: satellite retrieved column-average dry-air mole fraction of CO2 or CH4, respectively. Typical values are << 1.0 (typically close to 0.0004 for XCO2 and close to 0.0000018 for XCH4) and 1.0E20 = no data. 

xghg_nobs = {xco2_nobs or xch4_nobs}: Number of individual XGHG L2 observations per grid box used to compute the reported L3 XGHG monthly average value (0 = no data).

xghg_stdder = {xco2_stdder or xch4_stdder}: Standard error of the average computed from the single sounding noise and potential seasonal and regional biases, i.e., the inter algorithm spread.

xghg_stddev = {xco2_stddev or xch4_stddev}:  Standard deviation of the L2 observations within each grid box. 

column_averaging_kernel: XGHG averaging kernel (dimensionless); a vertical profile (1.0E20 = no data). The normalized column-averaging kernel represents the sensitivity of the retrieved XGHG to the true mole fraction depending on pressure (height). All values represent layer averages within the corresponding pressure levels. Values near one are ideal and indicate that the influence of the a priori is minimal. Profiles are ordered from the surface to the top of atmosphere. 

vmr_profile_ghg_apriori = {vmr_profile_co2_apriori or vmr_profile_ch4_apriori}: A priori dry-air mole fraction profile of atmospheric CO2 or CH4, respectively, expressed as a dimensionless fraction between 0.0 and 1.0 (1.0E20 = no data). All values represent layer averages within the corresponding pressure levels. Profiles are ordered from the surface to the top of atmosphere. The a priori profile is needed to apply the column averaging kernel.

1.5.4. Examples of known climate applications and best practices

The L3 OBS4MIPs XCO2 and XCH4 products have been primarily generated for comparison with climate models, see, for example Lauer et al., 2017, and Gier et al., 2020, but have also been used for other applications such as computations of annual mean atmospheric growth rates (e.g., Buchwitz et al., 2018; Reuter et al., 2020).

The L3 XCO2 and XCH4 v4.6 OBS4MIPS format data products described in this document (in combination with satellite XCO2 and XCH4 retrievals from the CAMS project https://atmosphere.copernicus.eu (last access: 5-Apr-2023), extending the OBS4MIPS data in time) have been used for the Copernicus Press Release issued in January 2023: "Copernicus: 2022 was a year of climate extremes, with record high temperatures and rising concentrations of greenhouse gases" https://climate.copernicus.eu/copernicus-2022-was-year-climate-extremes-record-high-temperatures-and-rising-concentrations (last access: 5-Apr-2023).

1.5.5. Known Issues and Limitations

Until 04/2009, the Obs4MIPs XCO2 dataset was based solely on a SCIAMACHY dataset. This dataset is land-only and of lower quality than the later datasets, which has a direct impact on the Obs4MIPs product. As only one dataset was used during this period, the standard error could not be determined using the ensemble, but only from the validation study.

Until 04/2009, the Obs4MIPs XCH4 dataset was based solely on a SCIAMACHY dataset. Due to technical issues affecting key methane-sensitive detector pixels of the SCIAMACHY instrument, the dataset is land-only from 11/2005 onwards and significantly inferior in quality compared to later datasets. This directly impacts the Obs4MIPs product. As only one dataset was used during this period, the standard error could not be determined using the ensemble, but only from the validation study.

In 01/2015, GOSAT had to switch to the secondary pointing mechanism due to degradation of the primary system. This affected all GOSAT L2 XCO2 and XCH4 L2 products used by EMMA, resulting in a data gap in the Obs4MIPs XCO2 and XCH4 products for this month.

2. Data access information

The data products and corresponding documentation are / will be made available via the Copernicus Climate Data Store (CDS): https://cds.climate.copernicus.eu/#!/home

Direct link to CO2 products: https://cds.climate.copernicus.eu/datasets/satellite-carbon-dioxide?tab=overview, DOI: 10.24381/cds.f74805c8

Direct link to CH4 products: https://cds.climate.copernicus.eu/datasets/satellite-methane?tab=overview, DOI: 10.24381/cds.b25419f8

To download the data products, users have to select:

  • Processing level: L3
  • Variable: Column-average dry-air mole fraction
  • Sensor and algorithm: MERGED and OBS4MIPS
  • Version: 4.6

Users should first consult the user forum to find out if their question has already been answered. If not, users can use the ECMWF Support Portal to issue their request.

Technical questions, such as problems with data access, will be answered by ECMWF. Specific questions related to the data products will be answered by GHG retrieval experts. It will be aimed to respond as soon as possible (at least 85% if all questions will be answered within 15 working days).

Acknowledgements

We acknowledge previous funding by the European Space Agency (ESA) via Climate Change Initiative (CCI) project GHG-CCI. This funding significantly enhanced the quality of the retrieval algorithms and related documentation. This resulted in more mature data products as needed for an operational project such as the Copernicus Climate Change Service (C3S). We also acknowledge the availability of GOSAT and GOSAT-2 data products via the ESA GOSAT Third Party Mission (TPM) archive.

We are also very grateful to the GOSAT/GOSAT-2 teams in Japan comprising the Japan Aerospace Exploration Agency (JAXA), the National Institute for Environmental Studies (NIES), and the Ministry of the Environment (MOE) for providing access to the GOSAT and GOSAT-2 Level 1 and Level 2 data products. 

We also acknowledge the availability of OCO-2 Level 1 and Level 2 (XCO2) data products from NASA, which have been used for the generation of the XCO2_OBS4MIPS product. This product also includes OCO-2 XCO2 retrieved at Univ. Bremen with the FOCAL algorithm. The FOCAL activities would not have been possible without funding from University of Bremen, from the EU H2020 projects CHE (grant agreement ID: 776186) and VERIFY (Grant agreement ID: 776810), from ESA via project GHG-CCI+ and from EUMETSAT project FOCAL-CO2M.

The TCCON data were obtained from the TCCON Data Archive hosted by CaltechDATA at https://tccondata.org

References

Alexe et al., 2015: Alexe, M., P. Bergamaschi, A. Segers, R. Detmers, A. Butz, O. Hasekamp, S. Guerlet, R. Parker, H. Boesch, C. Frankenberg, R. A. Scheepmaker, E. Dlugokencky, C. Sweeney, S. C. Wofsy, and E. A. Kort, Inverse modeling of CH4 emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY, Atmos. Chem. Phys., 15, 113–133, doi:10.5194/acp-15-113-2015, 2015.

ATBD XGHG main, 2023: Buchwitz, M., Barr, A., Boesch, H., Borsdorff, T., Crevoisier, C., Di Noia, A., Hasekamp, O. P., Landgraf, J., Meilhac, N., Parker, R., Reuter, M., Schneising-Weigel, O.: Algorithm Theoretical Basis Document (ATBD) – Main document for Greenhouse Gas (GHG: CO2 & CH4) data set CDR6 (01.2003-12.2021), C3S project C3S2_312a_Lot2_DLR, v6.2, 2023. Link: https://www.iup.uni-bremen.de/carbon_ghg/docs/C3S/CDR6_2003-2021/C3S2_312a_Lot2_D-WP1_ATBD-2022-GHG_MAIN_v6.2.pdf 

ATBD MTGHG, 2024: Crevoisier, C., Meilhac, N., C3S Greenhouse Gas (GHG: MTCO2 v10.1 & MTCH4 v10.2): Algorithm Theoretical Basis Document (ATBD)

ATBD XGHG, 2024: Reuter , M., Fuentes Andrade, B., Buchwitz, M., C3S Greenhouse Gas (GHG: CO2 & CH4) v4.6: Algorithm Theoretical Basis Document (ATBD), C3S project C3S2_313a_DLR, 2024. Link: https://confluence.ecmwf.int/x/AS-OIQ

Bergamaschi et al., 2015: Bergamaschi, P., M. Corazza, U. Karstens, M. Athanassiadou, R. L. Thompson, I. Pison, A. J. Manning, P. Bousquet, A. Segers, A. T. Vermeulen, G. Janssens-Maenhout, M. Schmidt, M. Ramonet, F. Meinhardt, T. Aalto, L. Haszpra, J. Moncrieff, M. E. Popa, D. Lowry, M. Steinbacher, A. Jordan, S. O'Doherty, S. Piacentino, and E. Dlugokencky, Top-down estimates of European CH4 and N2O emissions based on four different inverse models, Atmos. Chem. Phys., 15, 715–736, https://doi.org/10.5194/acp-15-715-2015, 2015.

Boesch et al., 2011: Boesch, H., D. Baker, B. Connor, D. Crisp, and C. Miller, Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the Orbiting Carbon Observatory-2 mission, Remote Sensing, 3 (2), 270-304, 2011.

Bovensmann et al., 1999: Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., Chance, K. V., and Goede, A.: SCIAMACHY –Mission Objectives and Measurement Modes, J. Atmos. Sci., 56, 127–150, 1999.

Buchwitz et al., 2000: Buchwitz, M., Rozanov, V. V., and Burrows, J. P.: A near-infrared optimized DOAS method for the fast global retrieval of atmospheric CH4, CO, CO2, H2O, and N2O total column amounts from SCIAMACHY Envisat-1 nadir radiances, J. Geophys. Res. 105, 15,231-15,245, 2000.

Buchwitz et al., 2005: Buchwitz, M., R. de Beek, J. P. Burrows, H. Bovensmann, T. Warneke, J. Notholt, J. F. Meirink, A. P. H. Goede, P. Bergamaschi, S. Körner, M. Heimann, and A. Schulz, Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: Initial comparison with chemistry and transport models, Atmos. Chem. Phys., 5, 941-962, 2005.

Buchwitz et al., 2007: Buchwitz, M., O. Schneising, J. P. Burrows, H. Bovensmann, M. Reuter, J. Notholt: First direct observation of the atmospheric CO2 year-to-year increase from space, Atmos. Chem. Phys., 7, 4249-4256, 2007.

Buchwitz et al., 2013a: Buchwitz, M., M. Reuter, O. Schneising, H. Boesch, S. Guerlet, B. Dils, I. Aben, R. Armante, P. Bergamaschi, T. Blumenstock, H. Bovensmann, D. Brunner, B. Buchmann, J. P. Burrows, A. Butz, A. Chédin, F. Chevallier, C. D. Crevoisier, N. M. Deutscher, C. Frankenberg, F. Hase, O. P. Hasekamp, J. Heymann, T. Kaminski, A. Laeng, G. Lichtenberg, M. De Mazière, S. Noël, J. Notholt, J. Orphal, C. Popp, R. Parker, M. Scholze, R. Sussmann, G. P. Stiller, T. Warneke, C. Zehner, A. Bril, D. Crisp, D. W. T. Griffith, A. Kuze, C. O'Dell, S. Oshchepkov, V. Sherlock, H. Suto, P. Wennberg, D. Wunch, T. Yokota,  Y. Yoshida, The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets, Remote Sensing of Environment, doi:10.1016/j.rse.2013.04.024, 2013.

Buchwitz et al., 2016: Buchwitz, M., Reuter, M., Schneising, O., Hewson, W., Detmers, R. G., Boesch, H., Hasekamp, O. P., Aben, I., Bovensmann, H., Burrows, J. P., Butz, A., Chevallier, F., Dils, B., Frankenberg, C., Heymann, J., Lichtenberg, G., De Mazière, M., Notholt, J., Parker, R., Warneke, T., Zehner, C., Griffith, D. W. T., Deutscher, N. M., Kuze, A., Suto, H., and Wunch, D.:, Global satellite observations of column-averaged carbon dioxide and methane: The GHG-CCI XCO2 and XCH4 CRDP3 data, Remote Sensing of Environment (in press), Special Issue on Essential Climate Variables, DOI: 10.1016/j.rse.2016.12.027, (link: http://dx.doi.org/10.1016/j.rse.2016.12.027), 2016.

Buchwitz et al., 2016a: Buchwitz, M.; Reuter, M.; Aben, I.; Boesch, H.; Butz, A.; Detmers, R.G.; Frankenberg, C.; Hasekamp, O.P.; Parker, R.; Schneising, O.; Somkuti, P., ESA Greenhouse Gases Climate Change Initiative (GHG-CCI): Merged SCIAMACHY and GOSAT Level 3 gridded atmospheric column-average methane (XCH4) product in Obs4MIPs format, Centre for Environmental Data Analysis, 10 October 2016, doi:10.5285/C965E4AC-D2AF-4BAA-9E99-A234E9BA0193, pp. 11, 2016.

Buchwitz et al., 2017: ESA Climate Change Initiative (CCI) Product Validation and Intercomparison Report (PVIR) for the Essential Climate Variable (ECV) Greenhouse Gases (GHG) for data set Climate Research Data Package No. 4 (CRDP#4), Version 5.0, 9. Feb. 2017, 2017.

Buchwitz et al., 2018: Buchwitz, M., Reuter, M., Schneising, O., Noel, S., Gier, B., Bovensmann, H., Burrows, J. P., Boesch, H., Anand, J., Parker, R. J., Somkuti, P., Detmers, R. G., Hasekamp, O. P., Aben, I., Butz, A., Kuze, A., Suto, H., Yoshida, Y., Crisp, D., and O'Dell, C., Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003-2016, Atmos. Chem. Phys., 18, 17355-17370, https://doi.org/10.5194/acp-18-17355-2018, 2018.

Burrows et al., 1995: Burrows, J. P., Hölzle, E., Goede, A. P. H., Visser, H., and Fricke, W.: SCIAMACHY – Scanning Imaging Absorption Spectrometer for Atmospheric Chartography, Acta Astronaut., 35, 445–451, 1995.

Butz et al., 2011: Butz, A., Guerlet, S., Hasekamp, O., Schepers, D., Galli, A.,Aben, I., Frankenberg, C., Hartmann, J.-M., Tran, H., Kuze,A., Keppel-Aleks, G., Toon, G., Wunch, D., Wennberg, P., Deutscher, N., Griffith, D., Macatangay, R., Messerschmidt, J., Notholt, J., and Warneke, T.: Toward accurate CO2 and CH4 observations from GOSAT, Geophys. Res. Lett., 38, L14812, https://doi.org/10.1029/2011GL047888, 2011.

Chevallier et al., 2014: Chevallier, F., Palmer, P.I., Feng, L., Boesch, H., O'Dell, C.W., Bousquet, P., Towards robust and consistent regional CO2 flux estimates from in situ and space-borne measurements of atmospheric CO2, Geophys. Res. Lett., 41, 1065-1070, DOI: 10.1002/2013GL058772, 2014.

Chevallier et al., 2016: Chevallier, F., et al., Climate Assessment Report (CAR), ESA Climate Change Initiative (CCI) GHG-CCI project, Version 3, 3 May 2016, 2016.

CMUG-RBD, 2012: Climate Modelling User Group Requirements Baseline Document, Deliverable 1.2, Number D1.2, ESA Climate Change Initiative (CCI), Version 2.0, 17 Dec 2012, 2012. Link: https://climate.esa.int/media/documents/CMUG_D1.2_URD_v2.0.pdf

Cogan et al., 2012: Cogan, A. J., Boesch, H., Parker, R. J., Feng, L., Palmer, P. I., Blavier, J.-F. L., Deutscher, N. M., Macatangay, R., Notholt, J., Roehl, C., Warneke, T., and Wunch, D.: Atmospheric carbon dioxide retrieved from the Greenhouse gases Observing SATellite (GOSAT): Comparison with ground-based TCCON observations and GEOS-Chem model calculations, J. Geophys. Res. Atmos., 117, D21301, https://doi.org/10.1029/2012JD018087, 2012.

Cressot et al., 2014: Cressot, C., F. Chevallier, P. Bousquet, et al., On the consistency between global and regional methane emissions inferred from SCIAMACHY, TANSO-FTS, IASI and surface measurements, Atmos. Chem. Phys., 14, 577-592, 2014.

Crisp et al., 2004: Crisp, D., Atlas, R. M., Breon, F.-M., Brown, L. R., Burrows, J. P., Ciais, P., Connor, B. J., Doney, S. C., Fung, I. Y., Jacob, D. J., Miller, C. E., O'Brien, D., Pawson, S., Randerson, J. T., Rayner, P., Salawitch, R. S., Sander, S. P., Sen, B., Stephens, G. L., Tans, P. P., Toon, G. C., Wennberg, P. O., Wofsy, S. C., Yung, Y. L., Kuang, Z., Chudasama, B., Sprague, G., Weiss, P., Pollock, R., Kenyon, D., and Schroll, S.: The Orbiting Carbon Observatory (OCO) mission, Adv. Space Res., 34, 700-709, 2004.

Detmers et al., 2015: Detmers, R. G., O. Hasekamp, I. Aben, S. Houweling, T. T. van Leeuwen, A. Butz, J. Landgraf, P. Koehler, L. Guanter, and B. Poulter, Anomalous carbon uptake in Australia as seen by GOSAT, Geophys. Res. Lett., 42, doi:10.1002/2015GL065161, 2015.

Dils et al., 2014: B. Dils, M. Buchwitz, M. Reuter, O. Schneising, H. Boesch, R. Parker, S. Guerlet, I. Aben, T. Blumenstock, J. P. Burrows, A. Butz, N. M. Deutscher, C. Frankenberg, F. Hase, O. P. Hasekamp, J. Heymann, M. De Mazière, J. Notholt, R. Sussmann, T. Warneke, D. Griffith, V. Sherlock, D. Wunch :The Greenhouse Gas Climate Change Initiative (GHG-CCI): Comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO2 and CH4 retrieval algorithm products with measurements from the TCCON network, Atmos. Meas. Tech., 7, 1723-1744, 2014.

Dowd et al., 2023: Dowd, E., Wilson, C., Chipperfield, M. P., Gloor, E., Manning, A., & Doherty, R.: Decreasing seasonal cycle amplitude of methane in the northern high latitudes being driven by lower-latitude changes in emissions and transport. Atmospheric Chemistry and Physics, 23(13), 7363-7382, 2023.

ESA-CCI-GHG-URD, 2024: Chevallier, F., Marshall, J., et al., User Requirements Document (URD) for the Essential Climate Variable (ECV) Greenhouse Gases (GHG), ESA Climate Change Initiative (CCI) GHG-CCI+ project, Version 4.0, 16-May-2024, pp. 40, 2024. Link: https://www.iup.uni-bremen.de/carbon_ghg/docs/GHG-CCIplus/URDv4/URDv4.0_GHG-CCI+.pdf

Frankenberg et al., 2011: Frankenberg, C., Aben, I., Bergamaschi, P., et al., Global column-averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY: Trends and variability, J. Geophys. Res., doi:10.1029/2010JD014849, 2011.

GCOS-154: Global Climate Observing System (GCOS): SYSTEMATIC OBSERVATION REQUIREMENTS FOR SATELLITE-BASED DATA PRODUCTS FOR CLIMATE - 2011 Update - Supplemental details to the satellite-based component of the "Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update)", December 2011, prepared by World Meteorological Organization (WMO), Intergovernmental Oceanographic Commission, United Nations Environment Programme (UNEP), International Council for Science, Doc.: GCOS 154, link: http://cci.esa.int/sites/default/files/gcos-154.pdf, 2011.

GCOS-195: Status of the Global Observing System for Climate, GCOS-195, 2015. Link: https://library.wmo.int/doc_num.php?explnum_id=7213

GCOS-200: The Global Observing System for Climate: Implementation Needs, World Meteorological Organization (WMO), GCOS-200 (GOOS-214), pp. 325. Link: http://unfccc.int/files/science/workstreams/systematic_observation/application/pdf/gcos_ip_10oct2016.pdf, 2016.

GCOS-245: The 2022 GCOS ECVs Requirements, WMO, pp. 244, 2022.  Link: https://library.wmo.int/doc_num.php?explnum_id=11318

Gier et al., 2020: Gier, B. K., Buchwitz, M., Reuter, M., Cox, P. M., Friedlingstein, P., and Eyring, V.: Spatially resolved evaluation of Earth system models with satellite column-averaged CO2, Biogeosciences, 17, 6115-6144, https://doi.org/10.5194/bg-17-6115-2020, 2020.

Guerlet et al., 2013: Guerlet, S., S. Basu, A. Butz, M. Krol, P. Hahne, S. Houweling, O. P. Hasekamp and I. Aben, Reduced carbon uptake during the 2010 Northern Hemisphere summer from GOSAT, Geophys. Res. Lett., doi: 10.1002/grl.50402, 2013.

Hachmeister et al., 2022: Hachmeister, J., Schneising, O., Buchwitz, M., Lorente, A., Borsdorff, T., Burrows, J. P., Notholt, J., and Buschmann, M.: On the influence of underlying elevation data on Sentinel-5 Precursor satellite methane retrievals over Greenland, Atmos. Meas. Tech., 15, 4063–4074, https://doi.org/10.5194/amt-15-4063-2022, 2022.

Hachmeister et al., 2024: Hachmeister, J., Schneising, O., Buchwitz, M., Burrows, J. P., Notholt, J., and Buschmann, M.: Zonal variability of methane trends derived from satellite data, Atmos. Chem. Phys., 24, 577–595, https://doi.org/10.5194/acp-24-577-2024, 2024.

Hayman et al., 2014: Hayman, G. D., O'Connor, F. M., Dalvi, M., Clark, D. B., Gedney, N., Huntingford, C., Prigent, C., Buchwitz, M., Schneising, O., Burrows, J. P., Wilson, C., Richards, N., Chipperfield, M., Comparison of the HadGEM2 climate-chemistry model against in-situ and SCIAMACHY atmospheric methane data, Atmos. Chem. Phys., 14, 13257-13280, doi:10.5194/acp-14-13257-2014, 2014.

Hollmann et al., 2013: Hollmann, C.J. Merchant, R. Saunders, C. Downy, M. Buchwitz, A. Cazenave, E. Chuvieco, P. Defourny, G. de Leeuw, R. Forsberg, T. Holzer-Popp, F. Paul, S. Sandven, S. Sathyendranath, M. van Roozendael, W. Wagner, The ESA Climate Change Initiative: satellite data records for essential climate variables, Bulletin of the American Meteorological Society (BAMS), 0.1175/BAMS-D-11-00254.1, pp. 12, 2013.

Houweling et al., 2004: Houweling, S., Breon, F.-M., Aben, I., R¨odenbeck, C., Gloor, M., Heimann, M., and Ciais, P.: Inverse modeling of CO2 sources and sinks using satellite data: a synthetic inter-comparison of measurement techniques and their performance as a function of space and time, Atmos. Chem. Phys., 4, 523–538, doi:10.5194/acp-4-523-2004, 2004.

Houweling et al., 2015: Houweling, S., Baker, D., Basu, S., Boesch, H., Butz, A., Chevallier, F., Deng, F., Dlugokencky, E.J., Feng, L., Ganshin, A. and Hasekamp, O.: An intercomparison of inverse models for estimating sources and sinks of CO2 using GOSAT measurements. Journal of Geophysical Research: Atmospheres, 120(10), pp.5253-5266, 2015.

Kiel et al., 2019: Kiel, M., O'Dell, C. W., Fisher, B., Eldering, A., Nassar, R.,MacDonald, C. G., and Wennberg, P. O.: How bias correction goes wrong: measurement of XCO2 affected by erroneous surface pressure estimates, Atmos. Meas. Tech., 12, 2241–2259, https://doi.org/10.5194/amt-12-2241-2019, 2019.

Kharin and Zwiers, 2002: Kharin, V. and Zwiers, F.: Climate predictions with multimodel ensembles, J. Climate, 15, 793–799, doi:10.1175/1520-0442(2002)015<0793:CPWME>2.0.CO;2, 2002.

Krisna et al., 2021: Trismono Candra Krisna, Ilse Aben, Lianghai Wu, Otto Hasekamp, Jochen Landgraf: ESA Climate Change Initiative "Plus" (CCI+) Algorithm Theoretical Basis Document (ATBD) Version 1.3 – For the RemoTeC XCO2 and XCH4 GOSAT-2 SRON Full Physics Products (CO2_GO2_SRFP and CH4_GO2_SRFP) Version 2.0.0 for the Essential Climate Variable (ECV) Greenhouse Gases (GHG), https://www.iup.uni-bremen.de/carbon_ghg/docs/GHG-CCIplus/CRDP7/ATBDv3_GHG-CCI_CO2_CH4_GO2_SRFP_v2p0p0.pdf, 2021.

Kuze et al., 2009: Kuze, A., Suto, H., Nakajima, M., and Hamazaki, T. (2009), Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring, Appl. Opt., 48, 6716–6733, 2009.

Kuze et al., 2016: Kuze, A., Suto, H., Shiomi, K., Kawakami, S., Tanaka, M., Ueda, Y., Deguchi, A., Yoshida, J., Yamamoto, Y., Kataoka, F., Taylor, T. E., and Buijs, H. L.: Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space, Atmos. Meas. Tech., 9, 2445-2461, doi:10.5194/amt-9-2445-2016, 2016.

Lauer et al., 2017: Lauer, A., Eyring, V., Righi, M., Buchwitz, M., Defourny, P., Evaldsson, M., Friedlingstein, P., de Jeu, R., de Leeuw, G., Loew, A., Merchant, C. J., Mueller, B., Popp, T., Reuter, M., Sandven, S., Senftleben, D., Stengel, M., Van Roozendael, M., Wenzel, S., and Willen, U.: Benchmarking CMIP5modelswith a subset of ESA CCI Phase 2 data using the ESMValTool, Remote Sensing of Environment 203, 9-39, http://dx.doi.org/10.1016/j.rse.2017.01.007, 2017.

Laughner et al., 2024: Laughner, J. L., Toon, G. C., Mendonca, J., Petri, C., Roche, S., Wunch, D., Blavier, J.-F., Griffith, D. W. T., Heikkinen, P., Keeling, R. F., Kiel, M., Kivi, R., Roehl, C. M., Stephens, B. B., Baier, B. C., Chen, H., Choi, Y., Deutscher, N. M., DiGangi, J. P., Gross, J., Herkommer, B., Jeseck, P., Laemmel, T., Lan, X., McGee, E., McKain, K., Miller, J., Morino, I., Notholt, J., Ohyama, H., Pollard, D. F., Rettinger, M., Riris, H., Rousogenous, C., Sha, M. K., Shiomi, K., Strong, K., Sussmann, R., Té, Y., Velazco, V. A., Wofsy, S. C., Zhou, M., and Wennberg, P. O.: The Total Carbon Column Observing Network's GGG2020 data version, Earth Syst. Sci. Data, 16, 2197–2260, https://doi.org/10.5194/essd-16-2197-2024, 2024.

Massart et al., 2016: Massart, S., A. Agustí-Panareda, J. Heymann, M. Buchwitz, F. Chevallier, M. Reuter, M. Hilker, J. P. Burrows, N. M. Deutscher, D. G. Feist, F. Hase, R. Sussmann, F. Desmet, M. K. Dubey, D. W. T. Griffith, R. Kivi, C. Petri, M. Schneider, V. A. Velazco, Ability of the 4-D-Var analysis of the GOSAT BESD XCO2 retrievals to characterize atmospheric CO2 at large and synoptic scales, Atmos. Chem. Phys., 16, 1653-1671, doi:10.5194/acp-16-1653-2016, 2016.

McNorton et al., 2016: McNorton, J., E. Gloor, C. Wilson, G. D. Hayman, N. Gedney, E. Comyn-Platt, T. Marthews, R. J. Parker, H. Boesch, and M. P. Chipperfield, Role of regional wetland emissions in atmospheric methane variability, Geophys. Res. Lett., 43, doi:10.1002/2016GL070649, 2016.

National Research Council, 2004: National Research Council, Climate Data Records from Environmental Satellites: Interim Report 2004, 150 pp., ISBN: 978-0-309-09168-8, DOI: {+}https://doi.org/10.17226/10944+, 2004.

Noël et al., 2021: Noël, S., Reuter, M., Buchwitz, M., Borchardt, J., Hilker, M., Bovensmann, H., Burrows, J. P., Di Noia, A., Suto, H., Yoshida, Y., Buschmann, M., Deutscher, N. M., Feist, D. G., Griffith, D. W. T., Hase, F., Kivi, R., Morino, I., Notholt, J., Ohyama, H., Petri, C., Podolske, J. R., Pollard, D. F., Sha, M. K., Shiomi, K., Sussmann, R., Te, Y., Velazco, V. A., and Warneke, T.: XCO2 retrieval for GOSAT and GOSAT-2 based on the FOCAL algorithm, Atmos. Meas. Tech., 14, 3837-3869, https://doi.org/10.5194/amt-14-3837-2021, 2021.

Noël et al., 2022: S. Noël, M. Reuter, M. Buchwitz, J. Borchardt, M. Hilker, O. Schneising, H. Bovensmann, J.P. Burrows, A. Di Noia, R.J. Parker, H. Suto, Y. Yoshida, M. Buschmann, N.M. Deutscher, D.G. Feist, D.W.T. Griffith, F. Hase, R. Kivi, C. Liu, I. Morino, J. Notholt, Y.-S. Oh, H. Ohyama, C. Petri, D.F. Pollard, M. Rettinger, C. Roehl, C. Rousogenous, M.K. Sha, K. Shiomi, K. Strong, R. Sussmann, Y. Té, V.A. Velazco, M. Vrekoussis, and T. Warneke: Retrieval of greenhouse gases from GOSAT and GOSAT-2 using the FOCAL algorithm, Atmos. Meas. Tech., 15, 3401-3437, https://doi.org/10.5194/amt-15-3401-2022, 2022.

Pandey et al., 2016: Pandey, S., S. Houweling, M. Krol, I. Aben, F. Chevallier, E. J. Dlugokencky, L. V. Gatti, E. Gloor, J. B. Miller, R. Detmers, T. Machida, T. Roeckmann, Inverse modeling of GOSAT-retrieved ratios of total column CH4 and CO2 for 2009 and 2010, Atmos. Chem. Phys., 16, 5043–5062, doi:10.5194/acp-16-5043-2016, 2016.

Parker et al., 2011: Parker, R., Boesch, H., Cogan, A., et al., Methane Observations from the Greenhouse gases Observing SATellite: Comparison to ground-based TCCON data and Model Calculations, Geophys. Res. Lett., doi:10.1029/2011GL047871, 2011.

Parker et al., 2016: Parker, R. J., H. Boesch, M. J. Wooster, D. P. Moore, A. J. Webb, D. Gaveau, and D. Murdiyarso, Atmospheric CH4 and CO2 enhancements and biomass burning emission ratios derived from satellite observations of the 2015 Indonesian fire plumes, Atmos. Chem. Phys., Atmos. Chem. Phys., 16, 10111-10131, doi:10.5194/acp-16-10111-2016, 2016.

Parkinson et al., 2006: Parkinson, C., A. Ward and M. King, Earth Science Reference Handbook, NASA, Washington DC, 2006.

PQAR MTGHG, 2024: Crevoisier, C., Meilhac, N., C3S Greenhouse Gas (GHG: MTCO2 v10.1 & MTCH4 v10.2): Product Quality Assessment Report (PQAR)

PQAR XGHG main, 2023: Buchwitz, M., Barr., A., Meilhac, N. , Boesch, H., Crevoisier, C., Di Noia, A., Borsdorff, T., Hasekamp, O. P., Reuter, M., Schneising-Weigel, O., Product Quality Assessment Report (PQAR) – Main document for Greenhouse Gas (GHG: CO2 & CH4) data set CDR 7 (01.2003-12.2022), 2023. Link: https://www.iup.uni-bremen.de/carbon_ghg/docs/C3S/CDR7_2003-2022/C3S2_312a_Lot2_CDR7_PQAR_GHG_MAIN_v7.2.pdf.

PQAR XGHG, 2024: Reuter , M., Fuentes Andrade, B., Buchwitz, M., C3S Greenhouse Gas (GHG: CO2 & CH4) v4.6: Product Quality Assessment Report (PQAR), C3S project C3S2_313a_DLR, 2024

PUGS MTGHG, 2024: Crevoisier, C., Meilhac, N., C3S Greenhouse Gas (GHG: MTCO2 v10.1 & MTCH4 v10.2): Product User Guide and Specification (PUGS)

PUGS XGHG main, 2023: Buchwitz, M., Barr, A., Boesch, H., Borsdorff, T., Crevoisier, C., Di Noia, A., Hasekamp, O. P., Landgraf, J., Meilhac, N., Parker, R., Reuter, M., Schneising-Weigel, O.: Product User Guide and Specification (PUGS) – Main document for Greenhouse Gas (GHG: CO2 & CH4) data set CDR7 (01.2003-12.2022), C3S project C3S2_312a_Lot2_DLR, 2023. Link: https://www.iup.uni-bremen.de/carbon_ghg/docs/C3S/CDR7_2003-2022/C3S2_312a_Lot2_CDR7_PUGS_GHG_MAIN_v7.3.pdf

Reuter et al., 2011: M. Reuter, H. Bovensmann, M. Buchwitz, J. P. Burrows, B. J. Connor, N. M. Deutscher, D. W. T. Griffith, J. Heymann, G. Keppel-Aleks, J. Messerschmidt, J. Notholt, C. Petri, J. Robinson, O. Schneising, V. Sherlock, V. Velazco, T. Warneke, P. O. Wennberg, D. Wunch: Retrieval of atmospheric CO2 with enhanced accuracy and precision from SCIAMACHY: Validation with FTS measurements and comparison with model results. Journal of Geophysical Research - Atmospheres, 116, D04301, doi: 10.1029/2010JD015047, 2011.

Reuter et al., 2013: M. Reuter, H. Bösch, H. Bovensmann, A. Bril, M. Buchwitz, A. Butz, J. P. Burrows, C. W. O'Dell, S. Guerlet, O. Hasekamp, J. Heymann, N. Kikuchi, S. Oshchepkov, R. Parker, S. Pfeifer, O. Schneising, T. Yokota, and Y. Yoshida: A joint effort to deliver satellite retrieved atmospheric CO2 concentrations for surface flux inversions: the ensemble median algorithm EMMA. Atmospheric Chemistry and Physics, doi:10.5194/acp-13-1771-2013, 13, 1771-1780, 2013.

Reuter et al., 2014b: Reuter, M., M. Buchwitz, M. Hilker, J. Heymann, O. Schneising, D. Pillai, H. Bovensmann, J. P. Burrows, H. Bösch, R. Parker, A. Butz, O. Hasekamp, C. W. O'Dell, Y. Yoshida, C. Gerbig, T. Nehrkorn, N. M. Deutscher, T. Warneke, J. Notholt, F. Hase, R. Kivi, R. Sussmann, T. Machida, H. Matsueda, and Y. Sawa, Satellite-inferred European carbon sink larger than expected, Atmos. Chem. Phys., 14, 13739-13753, doi:10.5194/acp-14-13739-2014, 2014.

Reuter et al., 2017: Reuter, M., M. Buchwitz, M. Hilker, J. Heymann, H. Bovensmann, J. Burrows, S. Houweling, Y. Liu, R. Nassar, F. Chevallier, P. Ciais, J. Marshall, and M. Reichstein, 2016: How much CO2 is taken up by the European terrestrial biosphere ?, Bull. Amer. Meteor. Soc. doi:10.1175/BAMS-D-15-00310.1, 24 April 2017, 665-671, 2017.

Reuter et al., 2020: M. Reuter, M. Buchwitz, O. Schneising, S. Noël, H. Bovensmann, J.P. Burrows, H. Boesch, A. Di Noia, J. Anand, R.J. Parker, P. Somkuti, L. Wu, O.P. Hasekamp, I. Aben, A. Kuze, H. Suto, K. Shiomi, Y. Yoshida, I. Morino, D. Crisp, C.W. O'Dell, J. Notholt, C. Petri, T. Warneke, V.A. Velazco, N.M. Deutscher, D.W.T. Griffith, R. Kivi, D.F. Pollard, F. Hase, R. Sussmann, Y.V. Té, K. Strong, S. Roche, M.K. Sha, M. De Mazière, D.G. Feist, L.T. Iraci, C.M. Roehl, C. Retscher, and D. Schepers: Ensemble-based satellite-derived carbon dioxide and methane column-averaged dry-air mole fraction data sets (2003-2018) for carbon and climate applications, Atmos. Meas. Tech., https://www.atmos-meas-tech.net/13/789/2020, 2020.

Rodgers, 2000: Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific Publishing, Singapore, 2000.

Ross et al., 2013: Ross, A. N., Wooster, M. J., Boesch, H., Parker, R., First satellite measurements of carbon dioxide and methane emission ratios in wildfire plumes, Geophys. Res. Lett., 40, 1-5, doi:10.1002/grl.50733, 2013.

Shindell et al., 2013: Shindell, D. T., Pechony, O., Voulgarakis, A., et al. (2013), Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations, Atmos. Chem. Phys., 13, 2653–2689, doi:10.5194/acp-13-2653-2013, 2013.

Schepers et al., 2012: Schepers, D., Guerlet, S., Butz, A., Landgraf, J., Frankenberg, C., Hasekamp, O., Blavier, J.-F., Deutscher, N. M., Griffith, D. W. T., Hase, F., Kyro, E., Morino, I., Sherlock, V., Sussmann, R., Aben, I. (2012), Methane retrievals from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared measurements: Performance comparison of proxy and physics retrieval algorithms, J. Geophys. Res., 117, D10307, doi:10.1029/2012JD017549, 2012.

Schneising et al., 2011: Schneising, O., Buchwitz, M., Reuter, M., et al., Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY, Atmos. Chem. Phys., 11, 2881-2892, 2011. 

Schneising et al., 2014a: Schneising, O., Reuter, M., Buchwitz, M., Heymann, J., Bovensmann, H., and Burrows, J. P., Terrestrial carbon sink observed from space: variation of growth rates and seasonal cycle amplitudes in response to interannual surface temperature variability, Atmos. Chem. Phys., 14, 133-141, 2014.

Schneising et al., 2014b: Schneising, O., Burrows, J. P., Dickerson, R. R., Buchwitz, M., Reuter, M., Bovensmann, H., Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations, Earth's Future, 2, DOI: 10.1002/2014EF000265, pp. 11, 2014. 

Schneising et al., 2020: Schneising, O., Buchwitz, M., Reuter, M., Vanselow, S., Bovensmann, H., and Burrows, J. P.: Remote sensing of methane leakage from natural gas and petroleum systems revisited, Atmos. Chem. Phys., 20, 9169-9182, https://doi.org/10.5194/acp-20-9169-2020, 2020.

Schneising et al., 2023: Schneising, O., Buchwitz, M., Hachmeister, J., Vanselow, S., Reuter, M., Buschmann, M., Bovensmann, H., and Burrows, J. P.: Advances in retrieving XCH4 and XCO from Sentinel-5 Precursor: improvements in the scientific TROPOMI/WFMD algorithm, Atmos. Meas. Tech., 16, 669–694, https://doi.org/10.5194/amt-16-669-2023, 2023.

Suto et al., 2021: Suto, H., Kataoka, F., Kikuchi, N., Knuteson, R. O., Butz, A., Haun, M., Buijs, H., Shiomi, K., Imai, H., and Kuze, A.: Thermal and nearinfrared sensor for carbon observation Fourier transform spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing SATellite-2 (GOSAT-2) during its first year in orbit, Atmos. Meas. Tech., 14, 2013–2039, https://doi.org/10.5194/amt-14-2013-2021, 2021.

TR-GAD GHG, 2024: Buchwitz, M., et al., Target Requirement and Gap Analysis Document, Copernicus Climate Change Service (C3S) project on satellite-derived Essential Climate Variable (ECV) Greenhouse Gases (CO2 and CH4) data products (project C3S2_312a_Lot2), Version 5.6, 22-Mar-2024, pp. 87, 2024. Latest version: http://wdc.dlr.de/C3S_312b_Lot2/Documentation/GHG/C3S2_312a_Lot2_TRD-GAD_GHG_latest.pdf

Turner et al., 2015: Turner, A. J., D. J. Jacob, K. J. Wecht, J. D. Maasakkers, S. C. Biraud, H. Boesch, K. W. Bowman, N. M. Deutscher, M. K. Dubey, D. W. T. Griffith, F. Hase, A. Kuze, J. Notholt, H. Ohyama, R. Parker, V. H. Payne, R. Sussmann, V. A. Velazco, T. Warneke, P. O. Wennberg, and D. Wunch: Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data, Atmos. Chem. Phys., 15, 7049-7069, doi:10.5194/acp-15-7049-2015, 2015.

Turner et al., 2016: Turner, A. J., D. J. Jacob, J. Benmergui, S. C. Wofsy, J. D. Maasakkers, A. Butz, O. Hasekamp, and S. C. Biraud, A large increase in U.S. methane emissions over the past decade inferred from satellite data and surface observations, Geophys. Res. Lett., 43, 2218–2224, doi:10.1002/2016GL067987, 2016.

Werscheck, 2015: Werscheck, M., EUMETSAT Satellite Application Facility on Climate Monitoring, C3S Climate Data Store workshop, Reading, UK, 3-6 March 2015. {+}http://www.ecmwf.int/sites/default/files/elibrary/2015/13546-existing-solutions-eumetsat-satellite-application-facility-climate-monitoring.pdf+

Wunch et al. 2010: Wunch, D., Toon, G. C., Wennberg, P. O., Wofsy, S. C., Stephens, B. B., Fischer, M. L., Uchino, O., Abshire, J. B., Bernath, P., Biraud, S. C., Blavier, J.-F. L., Boone, C., Bowman, K. P., Browell, E. V., Campos, T., Connor, B. J., Daube, B. C., Deutscher, N. M., Diao, M., Elkins, J. W., Gerbig, C., Gottlieb, E., Griffith, D. W. T., Hurst, D. F., Jiménez, R., Keppel-Aleks, G., Kort, E. A., Macatangay, R., Machida, T., Matsueda, H., Moore, F., Morino, I., Park, S., Robinson, J., Roehl, C. M., Sawa, Y., Sherlock, V., Sweeney, C., Tanaka, T., and Zondlo, M. A.: Calibration of the Total Carbon Column Observing Network using aircraft profile data, Atmospheric Measurement Techniques, 3, 1351–1362, doi:10.5194/amt-3-1351-2010, URL http://www.atmos-meas-tech.net/3/1351/2010/, 2010.

Wunch et al., 2011: Wunch, D., Toon, G. C., Blavier, J.-F. L., Washenfelder, R. A., Notholt, J., Connor, B. J., Griffith, D. W. T., Sherlock, V., and Wennberg, P. O.: The Total Carbon Column Observing Network (TCCON), Phil. Trans. R. Soc. A, 369, 2087–2112, doi:10.1098/rsta.2010.0240, 2011.

Wunch et al. 2015: Wunch, D., Toon, G.C., Sherlock, V., Deutscher, N.M., Liu, X., Feist, D.G., Wennberg, P.O., The Total Carbon Column Observing Network's GGG2014 Data Version. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA (available at: doi:10.14291/tccon.ggg2014.documentation.R0/1221662), 2015.

Yoshida et al., 2013: Yoshida, Y., Kikuchi, N., Morino, I., Uchino, O., Oshchepkov, S., Bril, A., Saeki, T., Schutgens, N., Toon, G. C., Wunch, D., Roehl, C. M., Wennberg, P. O., Griffith, D. W. T., Deutscher, N. M., Warneke, T., Notholt, J., Robinson, J., Sherlock, V., Connor, B., Rettinger, M., Sussmann, R., Ahonen, P., Heikkinen, P., Kyrö, E., Mendonca, J., Strong, K., Hase, F., Dohe, S., and Yokota, T.: Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data, Atmos. Meas. Tech., 6, 1533–1547, https://doi.org/10.5194/amt-6-1533-2013, 2013


This document has been produced in the context of the Copernicus Climate Change Service (C3S).

The activities leading to these results have been contracted by the European Centre for Medium-Range Weather Forecasts, operator of C3S on behalf of the European Union (Delegation Agreement signed on 11/11/2014 and Contribution Agreement signed on 22/07/2021). All information in this document is provided "as is" and no guarantee or warranty is given that the information is fit for any particular purpose.

The users thereof use the information at their sole risk and liability. For the avoidance of all doubt , the European Commission and the European Centre for Medium - Range Weather Forecasts have no liability in respect of this document, which is merely representing the author's view.

Related articles