Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Let us assume here that the radar-derived totals shown are accurate, and also indicate what would have been measured locally by raingauges. Then we  consider the ENS gridbox highlighted. Within this box, whilst the gridbox average rainfall total is about 17mm, the minimum and maximum rainfall amounts are about 2mm and 60mm respectively. This implies a lot of sub-grid variability. A completely accurate ENS member forecast would predict 17mm. But clearly this of itself would give the user no idea that locally there was much more (and indeed much less) than this amount. And to cause flash floods, as were observed, probably a 17mm total, locally, would not have been sufficient. The point rainfall aims to estimate the range of totals likely within the gridbox, and indeed deliver probabilities for different point values within that gridbox (albeit without saying where the largest and smallest amounts are likely to be). In other scenarios (e.g. frontal) rainfall totals will be much more uniform across gridboxesgrid boxes, but there are also recorded instances of even larger sub-grid variability. An unusual event in southern Spain in 2018 lead to a range of 12h rainfall in one ENS gridbox from 0 to ~350mm.

...

  • The new product is a post-processed product, based on calibrating ENS fields, including the Control run
  • It delivers probabilistic forecasts of rainfall totals for points - i.e. that would be measured by a raingauge randomly located within a model gridbox (hence the word 'point')
  • By way of comparison the raw ENS delivers probabilities for gridbox-average rainfall (in the current ENS that means ~18x18km ~9km x 9km boxes, up to day 15)
  • The term rainfall here means all precipitation types: rain, rain plus snow, snow etc., always converted into mm of rain equivalent.

...


Fig8.1.7-2:
 Two CDF examples comparing raw grid-scale (red), post-processed bias-corrected grid-scale (green), and post-processed point rainfall (blue). The first plot is for a site in Spain in summer at day 2. The second plot is for a southern England site in autumn, at day 4. Note that for each case the areas to the left of the green and blue curves, that represent the mean gridbox rainfall over the ENS, should be the same.

Output formats

Output from ecPoint can in principle be for pre-defined periods of time, or instances in time. For point rainfall we currently make available overlapping 12h periods up to day 10, namely T+0-T+12, T+6-T+18,... T+234-T+246. In future we plan also to make available equivalent products for 6 hour and 24 hour intervals.

Calibration

As with any post-processing system ecPoint has to be calibrated. For this it uses short-range Control run forecasts of 12h rainfall covering one year (the "training period"), which are individually compared with rainfall observations, for the same times, within the respective gridboxesgrid boxes. The full procedure is not described here, but involves segregation according to gridbox-weather-types, which each have different sub-grid variability structures and/or different bias corrections associated. The 12h point rainfall system introduced into operations in April 2019 incorporated 214 such types. The type definitions are currently based on the following parameters: convective rainfall fraction, total 12h precipitation forecast, 700hPa wind speed, CAPE, 24h clear-sky solar radiation.

Verification

1 year of global verification of 12h point rainfall products indicates that when compared to point observations, and relative to raw ENS forecasts, the point rainfall forecasts are much more reliable, and have a much better discrimination ability. The net frequency of point observations of no (measurable) rain is much higher in reality than it is in raw ENS gridbox forecasts, whereas the net frequency in point rainfall forecasts is almost perfect, as shown by the verification reliability metric. Meanwhile large totals, such as 50mm/12h, are much better delineated by the point rainfall; using the ROC area metric day 10 forecasts in the point rainfall are as good as day 1-2 forecasts from the raw ENS for this threshold.

Some Uses of Point Rainfall

...


Fig8.1.7-3: Colour fill options for a user-defined percentile (first plot, amounts in mm), and a user defined threshold (second plot, probability in %)

 

Fig 8.1.7-4 and Fig8.1.7-5 below show some ecCharts examples of new products, comparing with raw ENS, for lead time T+78-T+90. Because of the sophisticated post-processing undertaken, the relationship between point rainfall and raw ENS products can vary a lot, according to the amount and range of forecast rainfall totals, and the range of forecast gridbox-weather-types (which all depend also on lead time). The user-selected threshold is also of fundamental importance. However the following generalisations usually hold for map-based products, and may help forecasters to interpret the output (examples of some of these can be found on the plots below):

...

  1. Rainfall events that are themselves extreme for the world as a whole, such as those related to tropical cyclones, are unlikely to have been adequately represented in the calibration dataset, so point rainfall output can incorporate some misleading aspects - e.g. a finite probability of zero rain close to the TC track. We would recommend using the raw ENS rainfall near to TC tracks.
  2. Similar to (1) above, if the rainfall characteristics of a given site are known to depend very strongly on nearby topographic/coastal features then it may be that these are not adequately captured in the calibration process. In which case local knowledge or local MOS (model output statistics) may outperform the point rainfall.
  3. In a situation of large-scale (i.e. non-convective) rainfall over unresolved (sub-grid) orography, when cloud level winds are not light, users can reasonably expect the higher values in the point rainfall distribution to be on the upwind side, and the smaller values on the downwind side of any topographic barrier. However the magnitude of orographic enhancement, and potentially also the magnitude of the rain shadow effect, may be substantially under-estimated. "Spill over" of rainfall onto the lee side may also complicate the picture. Note also that the point rainfall probabilities ordinarily denote what is a spatially random draw from a gridbox; here we are advising that user experience/knowledge may be able to preferentially locate the smaller and larger values. This is something which would not be appropriate or possible in a situation of e.g. convection over an inland plain. Whilst biases in large scale rainfall over mountains may not be well handled, there is evidence that large biases in convective rainfall over mountains can sometimes be helpfully corrected for in the point rainfall.
  4. Diurnal cycle errors in convection are not currently catered for in the point rainfall.
  5. Calibration for very small totals is dependant on measurable rain ("trace" in observation records is counted as zero during the calibration). So if one wanted to count small (unmeasurable) amounts of rain as not dry, then using ecCharts to display "probability = 0mm" for the point rainfall would mostly give the user an overestimate of the probability of dry weather.
  6. Whllst Whilst ecPoint can increase or reduce, using a multiplying factor, the net rainfall in a given forecast from one ENS member (i.e. bias correct), it will never convert a forecast of zero rainfall to anything other than zero. This means that if all ENS members have zero rain in a given 12h period, the point rainfall will also show a 100% chance of zero rain in that period.
  7. Calibration data for ecPoint comes from land sites only, so strictly speaking forecasts might not be as valid for sea areas (particularly for surface-based convection). Nonetheless experience suggests that we do not generate unrealistic-looking output over sea areas.

...