Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 4 Next »

 

Introduction

Here we document the CAMS reanalysis dataset, which, eventually, will cover the period January 2003 to near real time (NRT), though the first tranche of data, released in October 2017, only covers the year 2003. The CAMS reanalysis is the latest global reanalysis data set of atmospheric composition (AC) produced by the Copernicus Atmosphere Monitoring Service, consisting of 3-dimensional time-consistent AC fields, including aerosols, chemical species and greenhouse gases. The data set builds on the experience gained during the production of the earlier MACC reanalysis and CAMS interim reanalysis.

The CAMS reanalysis was produced using 4DVar data assimilation in CY42R1 of ECMWF’s Integrated Forecast System (IFS), with 60 hybrid sigma/pressure (model) levels in the vertical, with the top level at 0.1 hPa. Atmospheric data are available on these levels and they are also interpolated to 25 pressure, 10 potential temperature and 1 potential vorticity level(s). "Surface or single level" data are also available..

Generally, the data are available at a sub-daily and monthly frequency and consist of analyses and 48h forecasts, initialised daily from analyses at 0 UTC.

The data are archived in the ECMWF data archive (MARS) and can be retrieved using the ECMWF Public Dataset service via the WebAPI (Member State users can access the data using MARS directly, in the usual manner). In the future, the data will be available from the CAMS data server.

The IFS model and data assimilation system

The 4DVar data assimilation uses 12 hour windows from 09 UTC to 21 UTC and 21 UTC to 09 UTC (the following day).

The IFS model documentation for various model cycles can be found on https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model/ifs-documentation. The model used in the CAMS reanalysis includes several updates to the aerosol and chemistry modules on top of the standard CY42R1 release.

Aerosol model

  • The aerosol model contains new aerosol optical properties (see Bozzo et al. 2017: "Implementation of a CAMS-based aerosol climatology in IFS" ECMWF Technical memo).
  • For Organic Matter (OM), there is significantly less extinction per mass.
  • Aerosol optical properties at 10 micron wavelength
  • Bugfix of dust and sea-salt sedimentation
  • Decrease of the fraction of sea-salt aerosol subjected to in-cloud scavenging from 0.7 to 0.2 (to compensate the low bias brought by the activation of sedimentation)
  • SO2 dry deposition velocities from SUMO (same as SO2 in chemistry)
  • Secondary Organic Aerosol (SOA) production scaled on non biomass burning CO emissions
  • SO2 to SO4 conversion complexified: a temperature dependency was added; conversion increased by 50% where relative humidity > 98% and T> 273.15 K
  • SO2 to SO4 conversion e-folding time was decreased from 8 to 4 days at the equator and from 3 to 0.5 days at the pole
  • SO4 dry deposition velocity was ncreased over the oceans
  • Use of mass fixer for aerosol species
  • Scaling of biomass-burning Black Carbon (BC) emissions using the ratio of BC AOD (CAMS interim reanalysis) / BC AOD (CAMS interim control run). Not done for OM because of the change in optical properties.
  • 80% of SO2 emissions are released in the two lowest model levels (as an update of tendencies) rather than at surface (fluxes)
  • Use of an external file to define the altitude of ~1500 volcanoes. Where there is a volcano, SO2 emissions are released 3 model levels higher than the altitude of the volcano.

Chemistry mechanism

The chemical mechanism of the IFS is an extended version of the Carbon Bond 2005 (CB05) chemical mechanism as implemented in CTM Transport Model 5 (TM5). In the CAMS reanalysis the model as documented in Flemming et al. (2015) and Flemming et al. (2017) is used with the following updates:

  • Update of heterogeneous rate coefficients for N2O5 and HO2 based on clouds and aerosol
  • Modification of photolysis rates by aerosol
  • Dynamic tropopause definition based on T profile for coupling to stratosphere and tropospheric mass diagnostics
  • Monthly mean VOC emissions calculated by the MEGAN model using MERRA reanalysed meteorology (Sindelarova et al., 2014) for all VOCs and for whole period 2003-2015 period.
  • Bugfixes, in particular for diurnal cycle of dry deposition whose correction has decreased ozone dry deposition (about 15-20%)     
  • CHEM_VER=15

Greenhouse Gases

The model configuration for greenhouse gases is based on the specification of the following components documented in the listed papers below:

  • Emissions for CO2 are documented in Agusti-Panareda et al. (2014), Massart et al. (2016).
  • Bias correction for CO2 ecosystem fluxes based on the Biogenic Flux Adjustement Scheme is documented by Agusti-Panareda et al. (2016)
  • Emissions and loss rate for CH4 is documented in Massart et al. (2014)
  • Mass fixer configuration for CO2 and CH4 is documented by Agusti-Panareda et al. (2017)

Emission datasets

The emissions datasets used to produce the CAMS reanalysis are listed in Table 1. They include the MACCity anthropogenic emission, GFAS fire emissions, MEGAN biogenic emissions and several GHG emission datasets.

Table 1: Emission datasets used in the CAMS reanalysis

Data setVersion/PeriodExperiment/path
MACCity anthropognic emissionsMACCity_gfas_rean_v2/fwsm/lb/project/macc/grg/cifs_prep/emis_data/MACCity_gfas_rean_v2/tm5/processed/
GFAS

v0: 20021001-20021231

v1.2: 20030101-

 exp=ffxr, class="rd"

exp=0001, class="mc"

Dry depositionsumo dry deposition/home/rd/ecgems/data/cifs_input/chem/drydep_data/sumo/tm5/255l_2/
VOC emissionsMonthly mean VOC emissions calculated by the MEGAN model using MERRA reanalysed meteorology (Sindelarova et al., 2014)
CO2 ocean fluxesTakahashi et al. (2009) climatology/home/rd/ecgems/data/cifs_input/ghg/emis_data/co2_ocean/takahashi2009/255l_2
CO2 emissions from aviationbased on ACCMIP NO emissions from aviation scaled to annual total CO2 from EDGAR aviation emissions./fwsm/lb/project/macc/grg/cifs_prep/emis_data/MACCity_gfas_rean_v2/aircraft/processed

CO2 ecosystem fluxes

bias corrected with BFAS

Based on CHTESSEL (modelled online in C-IFS)

Boussetta et al. (2013), Agusti-Panareda et al. (2014)

Agusti-Panareda et al. (2016)

CO2 anthropogenic emissionsEDGARv4.2FT2010 (2003-2010)/home/rd/ecgems/data/cifs_input/ghg/emis_data/co2_apf/edgarv42ft2010_v2016/255l_2
CH4 wetland emissionsLPJ-HYMN climatology (Spanhi et al.,2013)/home/rd/ecgems/data/cifs_input/ghg/emis_data/ch4_wetland/lpjhymn/255l_2/
CH4 total emissionsbased on EDGARv4.2FT2010 , LPJ-HYMN wetland climatology and other natural sources/sinks (2003-2010)/home/rd/ecgems/data/cifs_input/ghg/emis_data/ch4/total_emis_edgarv42ft2010_lpjhymnwetland/255l_2/
CH4 chemical sinkbased on Bergamaschi et al. (2013) dataset/home/rd/ecgems/data/cifs_input/ghg/chem_clim/ch4/255l_2/
CH4 anthropogenic emissionsEDGARv4.2FT2010 (2003-2010)/home/rd/ecgems/data/cifs_input/ghg/emis_data/ch4_apf/apf_edgarv42ft2010/255l_2/

Data organisation

The data can be accessed using the MARS keywords class=mc and expver=eac4 (or ‘dataset’ : “eac4” for the ECMWF Public Dataset service via the WebAPI). Subdivisions of the data are labelled using stream, type and levtype.

Stream:

  • oper: sub-daily
  • mnth: HRES synoptic monthly means
  • moda: HRES monthly means of daily means

Type:

  • an: analyses
  • fc: forecasts

Levtype:

  • sfc: surface or single level
  • pl: pressure levels
  • pt: potential temperature levels
  • pv: potential vorticity level
  • ml: model levels

Spatial grid

The CAMS reanalysis data have a resolution of 80km. The data are available either as spectral coefficients with a triangular truncation of T255 or on a reduced Gaussian grid with a resolution of N128. These grids are so called "linear grids", sometimes referred to as TL255.

Temporal frequency

For sub-daily data for the CAMS reanalysis (stream=oper) the analyses (type=an) are available 3-hourly. The daily forecast, run from 0 UTC, has 3-hourly steps from 0 to 48 hours for the 3D model level and pressure level fields, and hourly steps from 0 to 48 hours for the surface fields.

Monthly means

Several parameters are also available as synoptic monthly means, for each particular time and forecast step, (stream=mnth) and monthly means of daily means, for the month as a whole (stream=moda).

Monthly means for analyses and instantaneous forecasts are created from data with a valid time in the month, between 00 and 23 UTC, which excludes the time 00 UTC on the first day of the following month. Monthly means for accumulations and mean rates are created from data with a forecast period falling within the month. For example, monthly means of daily means for accumulations and mean rates are created from contiguous data with forecast periods spanning from 00 UTC on the first day of the month to 00 UTC on the first day of the following month.

Data format

Model level fields are in GRIB2 format. All other fields are in GRIB1, unless otherwise indicated.

Level listings

Pressure levels: 1000/950/925/900/850/800/700/600/500/400/300/250/200/150/100/70/50/30/20/10/7/5/3/2/1

Potential temperature levels: 300/315/320/330/350/370/395/475/600/850

Potential vorticity level: 2000

Model levels: 1/to/60, which are described at https://www.ecmwf.int/en/forecasts/documentation-and-support/60-model-levels.

Parameter listings

Tables 1-5 below describe the surface and single level parameters (levtype=sfc), Table 6 describes wave parameters, Table 7 describes the monthly mean exceptions for surface and single level and wave parameters and Tables 8-12 describe upper air parameters on various levtypes.

 

Table 1: stream=oper/mnth/moda, levtype=sfc: surface and single level parameters: invariants

count

name

units

shortName

paramId

an

fc

1

Lake cover

(0 - 1)

cl

26

x

x

2

Lake depth

m

dl

228007

x

x

3

Low vegetation cover

(0 - 1)

cvl

27

x

 

4

High vegetation cover

(0 - 1)

cvh

28

x

 

5

Type of low vegetation

~

tvl

29

x

 

6

Type of high vegetation

~

tvh

30

x

 

7

Soil type

~

slt

43

x

 

8

Standard deviation of filtered subgrid orography

m

sdfor

74

x

 

9

Geopotential

m**2 s**-2

z

129

x

x

10

Standard deviation of orography

~

sdor

160

x

 

11

Anisotropy of sub-gridscale orography

~

isor

161

x

 

12

Angle of sub-gridscale orography

radians

anor

162

x

 

13

Slope of sub-gridscale orography

~

slor

163

x

 

14

Land-sea mask

(0 - 1)

lsm

172

x

x

 


Table 2: stream=oper/mnth/moda, levtype=sfc: surface and single level parameters: instantaneous

count

name

units

shortName

paramId

an

fc

1

Convective inhibition

J kg**-1

cin

228001

 

x

2

Friction velocity

m s**-1

zust

228003

 

x

3

Lake mix-layer temperature

K

lmlt

228008

x

x

4

Lake mix-layer depth

m

lmld

228009

x

x

5

Lake bottom temperature

K

lblt

228010

x

x

6

Lake total layer temperature

K

ltlt

228011

x

x

7

Lake shape factor

dimensionless

lshf

228012

x

x

8

Lake ice temperature

K

lict

228013

x

x

9

Lake ice depth

m

licd

228014

x

x

10

UV visible albedo for direct radiation

(0 - 1)

aluvp

15

x

x

11

Minimum vertical gradient of refractivity inside trapping layer

m**-1

dndzn

228015

 

x

12

UV visible albedo for diffuse radiation

(0 - 1)

aluvd

16

x

x

13

Mean vertical gradient of refractivity inside trapping layer

m**-1

dndza

228016

 

x

14

Near IR albedo for direct radiation

(0 - 1)

alnip

17

x

x

15

Duct base height

m

dctb

228017

 

x

16

Near IR albedo for diffuse radiation

(0 - 1)

alnid

18

x

x

17

Trapping layer base height

m

tplb

228018

 

x

18

Trapping layer top height

m

tplt

228019

 

x

19

Cloud base height

m

cbh

228023

 

x

20

Zero degree level

m

deg0l

228024

 

x

21

Instantaneous 10 metre wind gust

m s**-1

i10fg

228029

 

x

22

Sea-ice cover

(0 - 1)

ci

31

x

x

23

Snow albedo

(0 - 1)

asn

32

x

x

24

Snow density

kg m**-3

rsn

33

x

x

25

Sea surface temperature

K

sst

34

x

x

26

Ice temperature layer 1

K

istl1

35

x

x

27

Ice temperature layer 2

K

istl2

36

x

x

28

Ice temperature layer 3

K

istl3

37

x

x

29

Ice temperature layer 4

K

istl4

38

x

x

30

Volumetric soil water layer 1

m**3 m**-3

swvl1

39

x

x

31

Volumetric soil water layer 2

m**3 m**-3

swvl2

40

x

x

32

Volumetric soil water layer 3

m**3 m**-3

swvl3

41

x

x

33

Volumetric soil water layer 4

m**3 m**-3

swvl4

42

x

x

34

Convective available potential energy

J kg**-1

cape

59

x

x

35

Leaf area index, low vegetation

m**2 m**-2

lai_lv

66

x

x

36

Leaf area index, high vegetation

m**2 m**-2

lai_hv

67

x

x

37

Total column cloud liquid water

kg m**-2

tclw

78

x

x

38

Total column cloud ice water

kg m**-2

tciw

79

x

x

39

Total column supercooled liquid water

kg m**-2

tcslw

228088

 

x

40

Total column rain water

kg m**-2

tcrw

228089

x

x

41

Total column snow water

kg m**-2

tcsw

228090

x

x

42

Neutral wind at 10 m u-component

m s**-1

u10n

228131

x

x

43

Neutral wind at 10 m v-component

m s**-1

v10n

228132

x

x

44

Surface pressure

Pa

sp

134

x

x

45

Total column water

kg m**-2

tcw

136

x

x

46

Total column water vapour

kg m**-2

tcwv

137

x

x

47

Soil temperature level 1

K

stl1

139

x

x

48

Snow depth

m of water equivalent

sd

141

x

x

49

Charnock

~

chnk

148

x

x

50

Mean sea level pressure

Pa

msl

151

x

x

51

Boundary layer height

m

blh

159

x

x

52

Total cloud cover

(0 - 1)

tcc

164

x

x

53

10 metre U wind component

m s**-1

10u

165

x

x

54

10 metre V wind component

m s**-1

10v

166

x

x

55

2 metre temperature

K

2t

167

x

x

56

2 metre dewpoint temperature

K

2d

168

x

x

57

Soil temperature level 2

K

stl2

170

x

x

58

Soil temperature level 3

K

stl3

183

x

x

59

Low cloud cover

(0 - 1)

lcc

186

x

x

60

Medium cloud cover

(0 - 1)

mcc

187

x

x

61

High cloud cover

(0 - 1)

hcc

188

x

x

62

Skin reservoir content

m of water equivalent

src

198

x

x

63

Total column ozone

kg m**-2

tco3

206

x

x

64

Instantaneous large-scale surface precipitation fraction

(0 - 1)

ilspf

228217

 

x

65

Convective rain rate

kg m**-2 s**-1

crr

228218

 

x

66

Large scale rain rate

kg m**-2 s**-1

lsrr

228219

 

x

67

Convective snowfall rate water equivalent

kg m**-2 s**-1

csfr

228220

 

x

68

Large scale snowfall rate water equivalent

kg m**-2 s**-1

lssfr

228221

 

x

69

Instantaneous eastward turbulent surface stress

N m**-2

iews

229

x

x

70

Instantaneous northward turbulent surface stress

N m**-2

inss

230

x

x

71

Instantaneous surface sensible heat flux

W m**-2

ishf

231

x

x

72

Instantaneous moisture flux

kg m**-2 s**-1

ie

232

x

x

73

Skin temperature

K

skt

235

x

x

74

Soil temperature level 4

K

stl4

236

x

x

75

Temperature of snow layer

K

tsn

238

x

x

76

Forecast albedo

(0 - 1)

fal

243

x

x

77

Forecast surface roughness

m

fsr

244

x

x

78

Forecast logarithm of surface roughness for heat

~

flsr

245

x

x

79

100 metre U wind component

m s**-1

100u

228246

x

x

80

100 metre V wind component

m s**-1

100v

228247

x

x

81

Precipitation type

code table (4.201)

ptype

260015*

 

x

82

K index

K

kx

260121*

 

x

83

Total totals index

K

totalx

260123*

 

x

*GRIB2 format


 

Table 3: stream=oper/mnth/moda, levtype=sfc: surface and single level parameters: accumulations

count

name

units

shortName

paramId

an

fc

1

Large-scale precipitation fraction

s

lspf

50

 

x

2

Downward UV radiation at the surface

J m**-2

uvb

57

 

x

3

Boundary layer dissipation

J m**-2

bld

145

 

x

4

Surface sensible heat flux

J m**-2

sshf

146

 

x

5

Surface latent heat flux

J m**-2

slhf

147

 

x

6

Surface solar radiation downwards

J m**-2

ssrd

169

 

x

7

Surface thermal radiation downwards

J m**-2

strd

175

 

x

8

Surface net solar radiation

J m**-2

ssr

176

 

x

9

Surface net thermal radiation

J m**-2

str

177

 

x

10

Top net solar radiation

J m**-2

tsr

178

 

x

11

Top net thermal radiation

J m**-2

ttr

179

 

x

12

Eastward turbulent surface stress

N m**-2 s

ewss

180

 

x

13

Northward turbulent surface stress

N m**-2 s

nsss

181

 

x

14

Eastward gravity wave surface stress

N m**-2 s

lgws

195

 

x

15

Northward gravity wave surface stress

N m**-2 s

mgws

196

 

x

16

Gravity wave dissipation

J m**-2

gwd

197

 

x

17

Top net solar radiation, clear sky

J m**-2

tsrc

208

 

x

18

Top net thermal radiation, clear sky

J m**-2

ttrc

209

 

x

19

Surface net solar radiation, clear sky

J m**-2

ssrc

210

 

x

20

Surface net thermal radiation, clear sky

J m**-2

strc

211

 

x

21

TOA incident solar radiation

J m**-2

tisr

212

 

x

22

Vertically integrated moisture divergence

kg m**-2

vimd

213

 

x

23

Total sky direct solar radiation at surface

J m**-2

fdir

228021

 

x

24

Clear-sky direct solar radiation at surface

J m**-2

cdir

228022

 

x

25

Surface solar radiation downward clear-sky

J m**-2

ssrdc

228129

 

x

26

Surface thermal radiation downward clear-sky

J m**-2

strdc

228130

 

x

27

Surface runoff

m

sro

8

 

x

28

Sub-surface runoff

m

ssro

9

 

x

29

Snow evaporation

m of water equivalent

es

44

 

x

30

Snowmelt

m of water equivalent

smlt

45

 

x

31

Large-scale precipitation

m

lsp

142

 

x

32

Convective precipitation

m

cp

143

 

x

33

Snowfall

m of water equivalent

sf

144

 

x

34

Evaporation

m of water equivalent

e

182

 

x

35

Runoff

m

ro

205

 

x

36

Total precipitation

m

tp

228

 

x

37

Convective snowfall

m of water equivalent

csf

239

 

x

38

Large-scale snowfall

m of water equivalent

lsf

240

 

x

39

Potential evaporation

m

pev

228251

 

x

The data values for accumulations in stream=moda (monthly means of daily means) have been scaled to give units "per day". Thus, the hydrological parameters are in units of "m of water per day" and so they should be multiplied by 1000 to convert to kgm-2day-1 or mmday-1. Energy (turbulent and radiative) and momentum fluxes should be divided by 86400 seconds (24 hours) to convert to the commonly used units of Wm-2 and Nm-2, respectively.

 

Table 4: stream=oper, levtype=sfc: surface and single level parameters: minimum/maximum

count

name

units

shortName

paramId

an

fc

1

10 metre wind gust since previous post-processing

m s**-1

10fg

49

 

x

2

Maximum temperature at 2 metres since previous post-processing

K

mx2t

201

 

x

3

Minimum temperature at 2 metres since previous post-processing

K

mn2t

202

 

x

4

Maximum total precipitation rate since previous post-processing

kg m**-2 s**-1

mxtpr

228226

 

x

5

Minimum total precipitation rate since previous post-processing

kg m**-2 s**-1

mntpr

228227

 

x

 

 

Table 5: stream=oper/mnth/moda, levtype=sfc: surface and single level parameters: vertical integrals (not available for type=em/es)

count

name

units

shortName

paramId

an

fc

1

Vertical integral of mass of atmosphere

kg m**-2

vima

162053

x

x

2

Vertical integral of temperature

K kg m**-2

vit

162054

x

x

3

Vertical integral of kinetic energy

J m**-2

vike

162059

x

x

4

Vertical integral of thermal energy

J m**-2

vithe

162060

x

x

5

Vertical integral of potential+internal energy

J m**-2

vipie

162061

x

x

6

Vertical integral of potential+internal+latent energy

J m**-2

vipile

162062

x

x

7

Vertical integral of total energy

J m**-2

vitoe

162063

x

x

8

Vertical integral of energy conversion

W m**-2

viec

162064

x

x

9

Vertical integral of eastward mass flux

kg m**-1 s**-1

vimae

162065

x

x

10

Vertical integral of northward mass flux

kg m**-1 s**-1

viman

162066

x

x

11

Vertical integral of eastward kinetic energy flux

W m**-1

vikee

162067

x

x

12

Vertical integral of northward kinetic energy flux

W m**-1

viken

162068

x

x

13

Vertical integral of eastward heat flux

W m**-1

vithee

162069

x

x

14

Vertical integral of northward heat flux

W m**-1

vithen

162070

x

x

15

Vertical integral of eastward water vapour flux

kg m**-1 s**-1

viwve

162071

x

x

16

Vertical integral of northward water vapour flux

kg m**-1 s**-1

viwvn

162072

x

x

17

Vertical integral of eastward geopotential flux

W m**-1

vige

162073

x

x

18

Vertical integral of northward geopotential flux

W m**-1

vign

162074

x

x

19

Vertical integral of eastward total energy flux

W m**-1

vitoee

162075

x

x

20

Vertical integral of northward total energy flux

W m**-1

vitoen

162076

x

x

21

Vertical integral of eastward ozone flux

kg m**-1 s**-1

vioze

162077

x

x

22

Vertical integral of northward ozone flux

kg m**-1 s**-1

viozn

162078

x

x

23

Vertical integral of divergence of cloud liquid water flux

kg m**-2 s**-1

vilwd

162079

x

x

24

Vertical integral of divergence of cloud frozen water flux

kg m**-2 s**-1

viiwd

162080

x

x

25

Vertical integral of divergence of mass flux

kg m**-2 s**-1

vimad

162081

x

x

26

Vertical integral of divergence of kinetic energy flux

W m**-2

viked

162082

x

x

27

Vertical integral of divergence of thermal energy flux

W m**-2

vithed

162083

x

x

28

Vertical integral of divergence of moisture flux

kg m**-2 s**-1

viwvd

162084

x

x

29

Vertical integral of divergence of geopotential flux

W m**-2

vigd

162085

x

x

30

Vertical integral of divergence of total energy flux

W m**-2

vitoed

162086

x

x

31

Vertical integral of divergence of ozone flux

kg m**-2 s**-1

viozd

162087

x

x

32

Vertical integral of eastward cloud liquid water flux

kg m**-1 s**-1

vilwe

162088

x

x

33

Vertical integral of northward cloud liquid water flux

kg m**-1 s**-1

vilwn

162089

x

x

34

Vertical integral of eastward cloud frozen water flux

kg m**-1 s**-1

viiwe

162090

x

x

35

Vertical integral of northward cloud frozen water flux

kg m**-1 s**-1

viiwn

162091

x

x

36

Vertical integral of mass tendency

kg m**-2 s**-1

vimat

162092

x

 

 

 

Table 7: stream=mnth, levtype=sfc : monthly mean surface and single level and wave parameters: exceptions from Tables 1-6

count

name

units

shortName

paramId

an

fc

1

UV visible albedo for direct radiation

(0 - 1)

aluvp

15

x

no mean

2

UV visible albedo for diffuse radiation

(0 - 1)

aluvd

16

x

no mean

3

Near IR albedo for direct radiation

(0 - 1)

alnip

17

x

no mean

4

Near IR albedo for diffuse radiation

(0 - 1)

alnid

18

x

no mean

5

Magnitude of turbulent surface stress

N m**-2 s

magss

48

 

x

6

10 metre wind gust since previous post-processing

m s**-1

10fg

49

 

no mean

7

Maximum temperature at 2 metres since previous post-processing

K

mx2t

201

 

no mean

8

Minimum temperature at 2 metres since previous post-processing

K

mn2t

202

 

no mean

9

10 metre wind speed

m s**-1

10si

207

x

x

10

Maximum total precipitation rate since previous post-processing

kg m**-2 s**-1

mxtpr

228226

 

no mean

11

Minimum total precipitation rate since previous post-processing

kg m**-2 s**-1

mntpr

228227

 

no mean

12

Altimeter wave height

m

awh

140246

no mean

 

13

Altimeter corrected wave height

m

acwh

140247

no mean

 

14

Altimeter range relative correction

~

arrc

140248

no mean

 

15

2D wave spectra (single)

m**2 s radian**-1

2dfd

140251

no mean

 

 

Table 8: stream=oper, levtype=pl: pressure level parameters: instantaneous

count

name

units

shortName

paramId

an

fc

1

Potential vorticity

K m**2 kg**-1 s**-1

pv

60

x

x

2

Specific rain water content

kg kg**-1

crwc

75

x

x

3

Specific snow water content

kg kg**-1

cswc

76

x

x

4

Geopotential

m**2 s**-2

z

129

x

x

5

Temperature

K

t

130

x

x

6

U component of wind

m s**-1

u

131

x

x

7

V component of wind

m s**-1

v

132

x

x

8

Specific humidity

kg kg**-1

q

133

x

x

9

Vertical velocity

Pa s**-1

w

135

x

x

10

Vorticity (relative)

s**-1

vo

138

x

x

11

Divergence

s**-1

d

155

x

x

12

Relative humidity

%

r

157

x

x

13

Ozone mass mixing ratio

kg kg**-1

o3

203

x

x

14

Specific cloud liquid water content

kg kg**-1

clwc

246

x

x

15

Specific cloud ice water content

kg kg**-1

ciwc

247

x

x

16

Fraction of cloud cover

(0 - 1)

cc

248

x

x

 


Table 9: stream=oper, levtype=pt: potential temperature level parameters: instantaneous

count

name

units

shortName

paramId

an

fc

1

Montgomery potential

m**2 s**-2

mont

53

x

 

2

Pressure

Pa

pres

54

x

 

3

Potential vorticity

K m**2 kg**-1 s**-1

pv

60

x

 

4

U component of wind

m s**-1

u

131

x

 

5

V component of wind

m s**-1

v

132

x

 

6

Specific humidity

kg kg**-1

q

133

x

 

7

Vorticity (relative)

s**-1

vo

138

x

 

8

Divergence

s**-1

d

155

x

 

9

Ozone mass mixing ratio

kg kg**-1

o3

203

x

 

 

 

Table 10: stream=oper, levtype=pv: potential vorticity level parameters: instantaneous

count

name

units

shortName

paramId

an

fc

1

Potential temperature

K

pt

3

x

 

2

Pressure

Pa

pres

54

x

 

3

Geopotential

m**2 s**-2

z

129

x

 

4

U component of wind

m s**-1

u

131

x

 

5

V component of wind

m s**-1

v

132

x

 

6

Specific humidity

kg kg**-1

q

133

x

 

7

Ozone mass mixing ratio

kg kg**-1

o3

203

x

 

 

 

Table 11: stream=oper, levtype=ml: model level parameters: instantaneous

count

name

units

shortName

paramId

an

fc

1

Specific rain water content

kg kg**-1

crwc

75

x

x

2

Specific snow water content

kg kg**-1

cswc

76

x

x

3

Eta-coordinate vertical velocity

s**-1

etadot

77

x

x

4

Geopotential*

m**2 s**-2

z

129

x

x

5

Temperature

K

t

130

x

x

6

U component of wind

m s**-1

u

131

x

x

7

V component of wind

m s**-1

v

132

x

x

8

Specific humidity

kg kg**-1

q

133

x

x

9

Vertical velocity

Pa s**-1

w

135

x

x

10

Vorticity (relative)

s**-1

vo

138

x

x

11

Logarithm of surface pressure*

~

lnsp

152

x

x

12

Divergence

s**-1

d

155

x

x

13

Ozone mass mixing ratio

kg kg**-1

o3

203

x

x

14

Specific cloud liquid water content

kg kg**-1

clwc

246

x

x

15

Specific cloud ice water content

kg kg**-1

ciwc

247

x

x

16

Fraction of cloud cover

(0 - 1)

cc

248

x

x

*Only archived on level=1.

 

Table 12: stream=oper/enda/mnth/moda/edmm/edmo, levtype=ml: model level parameters: mean rates

countnameunitsshortNameparamIdanfc
1Mean temperature tendency due to short-wave radiationK s**-1mttswr235001 x

Satellite Data

The atmospheric composition satellite retrievals used as input into the CAMS reanalysis are listed below. The following abbreviations are used in Table 1. TC: Total column, TRC: Tropospheric column, PROF: profiles, PC: Partial columns, ColAv: Column average mixing ratio, QR= quality flag given by data providers, SOE: Solar elevation, MODORO: Model orography, PRESS_RL= pressure at bottom of layer, LAT: Latitude.

Table 1: Satellite retrievals of atmospheric composition that were assimilated in the CAMS reanalysis

ParameterInstrumentSatelliteProductPeriodData provider/ Version

Blacklist Criteria

(i.e. these data are not used)

Averaging kernels used
O3SCIAMACHYEnvisatTC20020803-20120408ESA, CCI (BIRA)

 

QR>0

SOE<6

no
O3MIPASEnvisatPROF

20030127- 20040326

20050127-20120331

ESA, NRT

ESA, CCI (KIT)


QR>0 for CCI data

no
O3MLSAuraPROF

20040803-20151231

NRT:

NASA, V4QR>0no
O3OMIAuraTC

KNMI reproc: 20041001-20150531

NRT:

KNMI/NASA, V003

QR>0

SOE<10

no
O3GOME-2Metop-ATC

20070123-

NRT:

ESA, CCI (BIRA)

QR>0

SOE<10

no
O3GOME-2Metop-BTC

201301-

NRT:

ESA, CCI (BIRA)

QR>0

SOE<10

no
O3SBUV/2NOAA-14PC 13L200407-200609NASA, v8.6

QR>0

SOE<6

MODORO > 1000. and PRESS_RL > 450.

 
O3SBUV/2NOAA-16PC 13L

200301-200706

 

NASA, v8.6

QR>0

SOE<6

MODORO > 1000. and PRESS_RL > 450.

no
O3SBUV/2NOAA-17PC 13L

200301-201108

 

NASA, v8.6

QR>0

SOE<6

MODORO > 1000. and PRESS_RL > 450.

no
O3SBUV/2NOAA-18PC 13L

200507-201211

 

NASA, v8.6

QR>0

SOE<6

MODORO > 1000. and PRESS_RL > 450.

no
O3SBUV/2NOAA-19PC 13L

200903-

NRT:

NASA, v8.6

QR>0

SOE<6

MODORO > 1000. and PRESS_RL > 450.

no
COMOPITTTerra (783)TC

20020101-20151231

NRT:

NCAR, V6

LAT>65.

LAT< -65

QR>0

Night time data over Greenland

yes
NO2SCIAMACHYEnvisatTRC

20030101-20101231


20110101-20120409

KNMI V1p

KNMI V2

QR>0

SOE<6

LAT>60

LAT< -60

yes
NO2OMIAuraTRC

20041001-20101231

20110101-20121231

0130101 -

KNMI, COl3

KNMI, Domino

KNMI NRT

QR>0

SOE<6

LAT>60

LAT< -60

yes
NO2GOME-2Metop-ATRC

20070418-20161231

NRT:

AC SAF, GDP4.8

QR>0

yes
NO2GOME-2Metop-BTRC

201301-20161231

NRT:

AC SAF, GDP4.8

QR>0

yes
AODAATSREnvisatTC20021201-20120331

ESA, CCI (Swansea)

abs(LAT)> 70no
AODMODISTerraTC

20021001-20151231

NRT:

NASA, COl6abs(LAT)> 70no
AODMODISAquaTC

20021001-20151231

NRT:

NASA, Col6abs(LAT)> 70no
CO2SCIAMACHYEnvisatColAv20030101-20120324

ESA CCI (Bremen)

QR>0yes
CO2IASIMetop-AColAv

20070701-20150531

LMD v8.0

MODORO > 6000yes
CO2IASIMetop-BColAv??LMD v8.0MODORO > 6000yes
CO2TansoGOSATColAv

20090601-20131231

ESA CCI (SRON)

QR>0yes
CH4SCIAMACHYEnvisatColAv20030108-20120408ESA CCI (SRON) v7.0

MODORO > 6000

QR > 0

yes
CH4IASIMetoP-AColAv

20070701-20150630

LMD V8.3

MODORO > 6000

LAT<-60. and LSMASK = land

yes
CH4IASIMetop-BColAv??LMD V8.3

MODORO > 6000

LAT<-60. and LSMASK = land

yes
CH4TansoGOSATColAv20090601-20131230ESA CCI (SRON)QR > 0yes

Control run

In parallel to the CAMS reanalysis a control run without data assimilation was run that covers the same period as the CAMS reanalysis. This control run uses the same model configuration as the CAMS reanalysis and is made up of 24h long cycling forecasts from 0 UTC. The meteorological initial fields at 0UTC were always taken from the CAMS reanalysis. Comparing the CAMS reanalysis with the control run allows us to identify the impact of the data assimilation.

The control run is available from MARS or WebAPI using expver=gqk3, stream=oper, type=fc.

Guidelines

The following advice is intended to help users understand particular features of the CAMS reanalysis data:

Known issues

At the time of writing (2017-10) we are aware of these issues with the CAMS reanalysis:


This list will be updated as we become aware of further issues in the CAMS reanalysis.

How to cite the CAMS Reanalysis

Please acknowledge the use of the CAMS reanalysis as stated in the Copernicus C3S/CAMS License agreement:

  • "Where the Licensee communicates to the public or distributes or publishes CAMS Information, the Licensee shall inform the recipients of the source of that information by using the following or any similar notice:

    'Generated using Copernicus Atmosphere Monitoring Service Information [Year]'.

  • Where the Licensee makes or contributes to a publication or distribution containing adapted or modified CAMS Information, the Licensee shall provide the following or any similar notice:

    'Contains modified Copernicus Atmosphere Monitoring Service Information [Year]';

Any such publication or distribution shall state that "neither the European Commission nor ECMWF is responsible for any use that may be made of the information it contains."

References

CAMS reanalysis references will be available from the ECMWF e-Library.

 

 

  • No labels